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is controlled by both external instructions and internal motives, but the
actions demanded by each may be different. A common consequence
of such a conflict is a delay in decision making and subsequent motor
responses. It is unknown, however, what neural mechanisms underlie
motivational conflict and associated response delay. To answer this
question, we recorded single-neuron activity in the superior colliculus
(SC) as macaque monkeys performed a visually guided, asymmetri-
cally rewarded saccade task. A peripheral spot of light at one of two
opposing positions was illuminated to indicate a saccade target. In a
given block of trials, one position was associated with a big reward
and the other with a small reward. The big-reward position was
alternated across blocks. Behavioral analyses revealed that small-reward
trials created a conflict between the instructed saccade to one position
and the internally motivated, yet invalid saccade to the opposite
position. We found that movement neurons in the SC temporally
exhibited bursting activity after the appearance of the small-reward
target opposite their movement field. This transient activity predicted
the amount of response delay for upcoming saccades. Our data
suggest that motivational conflict activates movement neurons in both
colliculi, thereby delaying saccade initiation through intercollicular
inhibitory interactions.

I N T R O D U C T I O N

Conflict is a never-ending issue for both humans and ani-
mals. It often arises from a competition between social rules
and individual internal motives, and often hinders decision
making. How the conflict affects behavior and how it is
resolved are of fundamental interest and importance in neuro-
science. It is still unclear what neural mechanisms are respon-
sible for the conflict resolution and the associated response
delay.

Conflict research traditionally uses tasks characterized by
interference between an invalid automatic response that is
triggered by irrelevant stimulus information and a valid adap-
tive response that is determined by relevant stimulus informa-
tion (Eriksen and Eriksen 1974; Hallett 1978; Isoda and
Hikosaka 2007; Nakamura et al. 2005; Simon 1969; Stroop
1935). These studies have consistently shown that responses
are particularly slow and error prone under conditions with
interference compared with those without interference. It is
suggested that delayed responses due to stimulus interference
result from competition between concurrently processed, but
mutually incompatible, motor programs (De Jong et al. 1994;

DeSoto et al. 2001; Gratton et al. 1988; Ullsperger and von
Cramon 2001). We shall refer to this type of conflict as sensory
conflict.

However, behavior is not guided by external instructions
alone. It can be controlled by both external instructions and
internal motives (Mogenson et al. 1980). In real life, the
actions demanded by each may be different, which we shall
refer to as motivational conflict. A typical situation is that
humans or animals are forced to choose a response option with
small gains as opposed to another option that would lead to
larger gains (Bowman et al. 1996; Minamimoto et al. 2005;
Tremblay and Schultz 2000; Watanabe et al. 2003a). Although
it is also known that motivational conflict produces response
delay, the underlying neural mechanisms are not known.

To investigate how motivational conflict delays upcoming
motor responses, we have devised a visually guided saccade
task with unequal reward outcomes for macaque monkeys
(“the visually guided biased saccade task”; Fig. 1A). In this
task, the saccade target is randomly illuminated at one of two
opposing positions, one position associated with a larger re-
ward, the other with a smaller reward. The position-reward
mapping remains constant during a given block of trials so that
the animal knows the current association between target posi-
tion and reward, but is frequently reversed across blocks (Fig.
1B). The animal has to make a correct response even if a small
reward is expected, thereby creating a motivational conflict in
small-reward trials. Using this model, we have recorded from
movement-related neurons in the superior colliculus (SC). The
SC is a paired structure in the midbrain and has a critical
function in the control of saccades (Sparks and Hartwich-
Young 1989; Wurtz and Albano 1980). Being a nodal point in
ocular motor circuitry with convergent inputs from various
cortical and subcortical structures, the SC appears to be an
ideal place for studying the impact of motivational conflict on
ocular motor behavior and underlying neural activity.

M E T H O D S

Two rhesus monkeys (Macaca mulatta), T and S, were used as
subjects. All animal care and experimental procedures were approved
by the National Eye Institute Animal Care and Use Committee and
complied with the Public Health Service Policy on the humane care
and use of laboratory animals.
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Surgical procedures

The monkey was anesthetized with intramuscular injections of
ketamine HCl (10 mg/kg), diazepam (1 mg/kg), and glycopyrrolate
(0.01 mg/kg), and then maintained at a general anesthetized state with
isoflurane. After the skull was exposed, acrylic screws were installed
to fasten the dental acrylic head implant to the skull. A plastic head
holder and recording chambers were placed stereotaxically and se-
cured with dental acrylic. Eye coils were implanted subconjunctivally
into both eyes using the methods described previously (Judge et al.
1980). Craniotomy was performed after the monkey had been well
trained for behavioral tasks described in the following text. Antibiot-
ics and analgesics were administered after surgery.

Behavioral procedures

During experimental sessions, the monkey was placed in a sound-
attenuated room and seated in a primate chair with its head immobi-
lized. Behavioral tasks were under control of a QNX-based real-time
experimentation data acquisition system [REX; Laboratory of Sensori-
motor Research, National Eye Institute, National Institutes of Health
(LSR/NEI/National Institutes of Health), Bethesda, MD]. Visual stim-
uli were rear-projected by an active matrix liquid crystal display
projector (PJ550; ViewSonic, Walnut, CA) onto a frontoparallel
screen 33 cm from the monkey’s eyes. Water reward was delivered on
a monkey’s correct response through a spigot under the control of a
solenoid valve, which was placed outside the sound-attenuated room.

The monkey was trained to perform the following two tasks using
operant conditioning with positive reinforcement: the memory-guided
saccade task (Hikosaka and Wurtz 1983) and the visually guided biased
saccade task (Lauwereyns et al. 2002). In the memory-guided saccade
task, a peripheral cue came on for 100 ms after the monkey had fixated
on a central fixation point (FP) for 800 ms. The monkey was required
to remember the cued location while maintaining central fixation for
another 800–1,200 ms. The fixation point then disappeared and the

monkey had to make a saccade to the cued location. This task was
used to map the response field of a neuron under study.

In the visually guided biased saccade task (Fig. 1), after the monkey
had fixated on the FP for 1 s, a peripheral target came on randomly
either in the neuron’s response field (50%) or in the diametrically
opposite position (50%). Simultaneously, the FP went off. The mon-
key was then required to make a saccade to the visible target within
700 ms. In a block of 20 trials, the correct saccade to one direction
was followed by a larger amount of reward (0.3 ml for monkey T and
0.4 ml for monkey S) and the correct saccade to the other direction
was followed by a smaller amount of reward (0.075 ml for monkey T)
or no reward (for monkey S). Even for the small or no reward
direction, the monkey had to saccade correctly because otherwise the
same trial was repeated. The position-reward contingency was re-
versed in the next block without any indication to the monkey. Note
that the position-reward contingency was fixed in a given block of
trials but the position of the target in each trial was unpredictable.

Recording procedures

Eye movements were recorded with the use of the magnetic
search-coil technique with temporal resolution of 1 ms (Robinson
1963). Single-unit recordings were carried out using tungsten elec-
trodes with impedances of 1.0–2.5 M� (FHC, Bowdoinham, ME).
The electrode was driven by a hydraulic micromanipulator (MO-97A;
Narishige, Tokyo, Japan) through a stainless steel guide tube, which
was used to penetrate the dura and was held in place by a grid that was
fixed inside the recording chamber (Crist et al. 1988). This grid
system allowed the positioning of the electrodes at every 1 mm
between penetrations. Neuronal activity was amplified, band-pass
filtered (600 Hz to 8 kHz), and single units were isolated using custom
voltage-time window discrimination software (MEX; LSR/NEI/Na-
tional Institutes of Health, Bethesda, MD). The SC was identified,
with the aid of magnetic resonance images, by its characteristic
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FIG. 1. Visually guided biased saccade
task. A: temporal sequences of events. The
monkeys first fixated at the central spot of
light (“Fixation”). After 1 s the fixation point
went off and, simultaneously, the saccade
target came on in the periphery (“Target”).
The monkeys then made a saccade to the
visible target (“Response”). The target was
selected pseudorandomly from 2 possible
locations, either in the response field of the
neuron under study or in the diametrically
opposite position. Throughout a block of 20
trials, the saccade to one position was asso-
ciated with a large reward and the saccade to
the other position was associated with a
small reward or no reward. B: the 2 kinds of
blocks with different position-reward contin-
gencies were alternated while recording from
individual neurons.
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neuronal discharges in relation to visual stimuli or saccades made into
a particular direction and amplitude.

Data analysis

We defined a neuron as movement related if the neuron showed a
statistically reliable increase in the discharge rate 40 to 0 ms before a
saccade made into the neuron’s response field as compared with the
discharge rate 100 to 0 ms before cue onset in the memory-guided
saccade task (Wilcoxon signed-rank test, P � 0.05). We calculated a
buildup index for individual movement-related neurons by averaging
over time the values of the spike density function (see following text)
110 to 100 ms before the onset of saccades made into the response
field in the memory-guided saccade task. Based on the buildup index,
all of the movement-related neurons were classified into either burst
neurons (buildup index �30 spikes/s) or buildup neurons (buildup
index �30 spikes/s) (Munoz and Wurtz 1995).

We excluded misdirected saccades in the visually guided biased
saccade task from the quantitative analyses subsequently described.
Misdirected saccades were defined as those that were directed in error
away from the saccade target. In addition, we treated the first trial in
each block as a trial belonging to the previous block because the
monkey was unable to recognize block changes until they had expe-
rienced at least one trial of reward outcomes in the new block.

As subsequently described, a subset of movement-related neurons
exhibited a transient burst of activity when the animal had to make a
saccade to the small-reward target that was opposite the response
field. This transient activity is a focus of our study and is tentatively
referred to as the “paradoxical posttarget activity” because these
neurons became active, although the saccade target appeared outside
their response field. To define the paradoxical posttarget activity, we
compared neuronal activity 0 to 100 ms after target onset (“control
period”) with activity 150 to 250 ms after target onset (“test period”)
in small-reward trials in which the target was positioned away from
the neuron’s response field. A movement-related neuron that showed
a statistically reliable increase in the discharge rate during the test
period compared with the control period (Wilcoxon signed-rank test,
P � 0.05) was defined as having the paradoxical posttarget activity.
To illustrate the change of the paradoxical posttarget activity to a
reversal of the position-reward contingency, we plotted the average
firing frequency during the test period against the trial position within
each block (Fig. 6).

To define the presence of anticipatory pretarget activity (Fig. 5), we
calculated the mean firing rate in a 100-ms time window ending 50 ms
after target onset (“peri-target period”). A movement-related neuron
was judged to have the pretarget activity if activity in the peri-target
period was significantly larger in blocks in which the contralateral
target was associated with a big reward than in blocks in which the
ipsilateral target was associated with a big reward (Mann–Whitney U
test, P � 0.05).

The termination time of the paradoxical posttarget activity for
individual trials was defined as the time when the interspike interval
(ISI) exceeded the criterion ISI for the first time after ISI reached the
minimum value. To determine the criterion ISI for each neuron, we
computed the average firing rate during a 40-ms presaccadic period
when the big-reward target was presented within the response field of
each neuron. We then multiplied the presaccadic firing rate by 0.075
(“criterion coefficient”) and took its reciprocal to yield the criterion
ISI (Fig. 2). Qualitatively similar results were obtained by using the
criterion coefficient � 0.10 or 0.05 (Fig. 2). If no action potential was
observed between target onset and saccade onset on a particular trial,
then we assigned 0 to the termination time for that trial. Correlations
between the SRT and the termination time were assessed by the
nonparametric Spearman rank correlation.

Continuous neuronal activation functions (spike density functions
[SDFs]) were constructed by convolving each action potential with an
asymmetrical kernel resembling a postsynaptic potential (Thompson

et al. 1996). In this kernel, the time constant for the growth phase was
set to 1 ms and that for the decay phase was set to 20 ms. We used this
kernel to avoid the influence of spikes backward in time.

R E S U L T S

Animal behavior

Consistent with previous reports (Lauwereyns et al. 2002;
Watanabe et al. 2003a), saccadic reaction time (SRT) consis-
tently changed depending on the expected outcome of reward:
the SRT was reliably shorter when the saccade was followed
by a big reward than when it was followed by a small reward
(Fig. 3A). For monkey T, the difference in the average SRT
between the two reward conditions was 118.0 ms and 103.6 ms
for the leftward and rightward saccades, respectively (P �
0.001, t-test). For monkey S, the difference was 134.1 and
175.5 ms for the leftward and rightward saccades, respectively
(P � 0.001, t-test). These behavioral data suggest that the
animal was motivated to make a saccade to the big-reward
position.

In addition to the difference in the average SRT, three
behavioral findings are noteworthy. First, the variability in the
SRT was substantially larger when a small reward was ex-
pected after the correct saccade than when a big reward was
expected (Fig. 3A). Second, the SRT decreased quickly for a
small-to-big reward transition but increased more slowly for a
big-to-small reward transition (Fig. 3A). Third, the monkeys
occasionally made misdirected saccades (Fig. 3B) almost ex-
clusively on small-reward trials (125/2,313 for small-reward
trials and 1/2,243 for big-reward trials in monkey T; 58/1,675
for small-reward trials and 1/1,570 for big-reward trials in
monkey S; P � 0.001 for both monkeys, chi-square test). In
those misdirected saccades, the saccade was directed in error to
the position associated with a big reward (note that the target
was not physically present at that location), which was usually
followed by a second saccade toward the correct visible target
(Fig. 3B). The occurrence of these misdirected saccades, along
with longer SRT, strongly suggests that a motivational conflict
was present in small-reward trials. More specifically, small-
reward trials created a conflict between a saccade to the
externally instructed position and a saccade to the internally
desired position.

Activity of SC movement-related neurons

We found that about two thirds of movement-related neu-
rons showed a transient burst of activity after target onset in
small-reward trials in which the big-reward position was in
their response field but the actual target was in the opposite
position. Figure 4 illustrates an example of the responses of a
single movement-related neuron recorded in the left SC. In Fig.
4A, each raster represents one trial and dots represent individ-
ual action potentials. The trials are displayed in actual temporal
order beginning at the top, separately for contraversive sac-
cades (the target was inside the neuron’s response field; right
column) and ipsiversive saccades (the target was opposite the
neuron’s response field; left column). In the first block, correct
contraversive and ipsiversive saccades were, respectively, fol-
lowed by a small reward (yellow background) and a big reward
(blue background). In the next block, the position-reward
contingency was reversed. In addition to a presaccadic burst of
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activity before contraversive saccades made into the response
field, this neuron was also activated when the small-reward
saccade had to be made away from the response field (Fig. 4A,
left column with yellow background). This activation was
surprising because the position of the target was opposite the
neuron’s response field, as shown in the neuron’s activity in
memory-guided saccades (Fig. 4A, bottom). We tentatively
refer to this activity as the paradoxical posttarget activity,
because the neuron responded despite the appearance of the
target outside the response field. The paradoxical posttarget
activity was transient: this neuron ceased firing before saccade
initiation (Fig. 4, A and B).

Figure 5 illustrates the responses of another movement-
related neuron recorded in the left SC. This neuron showed an
anticipatory increase in activity, albeit weakly, before target
onset in blocks where the contralateral target was associated
with a big reward (Blocks 1, 3, . . .). This pretarget activity may
reflect the animal’s desire for the big-reward target to appear in
the neuron’s response field and an associated shift of attention
to the big-reward target position (Hikosaka et al. 2006) because
the modulation of activity started before the animal knew the

amount of reward that would be given after the correct saccade.
In addition to the pretarget activity, however, this neuron fired
still further after target onset in small-reward trials, although
the target was specified in the position away from the response
field (Fig. 5A, left column with yellow background; see also
Fig. 5B). Again, the saccade was initiated after the paradoxical
posttarget activity terminated (Fig. 5, A and B).

Among 62 movement-related neurons studied, 41 neurons
(66.1%) exhibited the paradoxical posttarget activity. A subset
of these neurons (17/41, 42%) had both paradoxical posttarget
activity and anticipatory pretarget activity (as the neuron in
Fig. 5), whereas the remaining neurons had the paradoxical
posttarget activity only (as the neuron in Fig. 4) (Table 1). The
ensemble average activity for the 41 neurons showed a steep
rise in activity starting about 100 ms after the onset of the
small-reward target opposite the response field (Fig. 6A, red
line). By contrast, the same population of neurons remained
inactive when the big-reward target appeared at the same
location (Fig. 6A, blue line). The change in the paradoxical
posttarget activity on the reversal of the position-reward con-
tingency was quicker for a small-to-big reward transition than
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FIG. 2. Determination of termination
time. A: interspike interval (ISI) histograms
for 3 examples of trials from the neuron
shown in Fig. 4B. Black circles indicate
neuronal spikes; red triangles denote the
time of saccade initiation. The termination
time (indicated by red arrows) was defined
as the time when the ISI exceeded the crite-
rion ISI for the first time after ISI reached
the minimum value. The average firing rate
during a 40-ms presaccadic period for this
neuron was 311 spikes/s when the big-re-
ward target was presented in the response
field. Thus the criterion ISI (red solid line)
was 42.9 ms with a criterion coefficient of
0.075. For reference, the criterion ISIs with
the criterion coefficients of 0.05 and 0.1 are
shown by green and orange broken lines,
respectively. B: distribution of correlation
coefficients between saccadic reaction time
(SRT) and termination time. Filled bars in-
dicate neurons with significant positive cor-
relations between SRT and termination time.
The means of correlation coefficients with 3
different criterion coefficients were not sig-
nificantly different from one another (P �
0.79, one-way ANOVA after Fisher’s z-trans-
form).
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for a big-to-small transition (Fig. 6B). This resembled the
change in the SRT for the sessions in which movement-related
neurons with the paradoxical posttarget activity were recorded
(n � 41; Fig. 6C). These data raise the possibility that the
paradoxical posttarget activity of SC neurons may cause long
SRTs on small-reward trials.

Paradoxical posttarget activity predicts SRT in
small-reward trials

The above-described hypothesis predicts that the SRT is
longer if the paradoxical posttarget activity lasts longer. This
prediction appears to be supported by the paradoxical posttar-
get activity rank-ordered by SRTs (Figs. 4B and 5B). To
examine this impression statistically, we computed the corre-
lation between the SRT and the time at which paradoxical
posttarget activity terminated (“termination time”; see METHODS).
There was a strong positive correlation between the SRT and
the termination time for the neuron shown in Fig. 4 (Spear-
man’s r � 0.86, P � 0.001; Fig. 4C) and for the neuron shown
in Fig. 5 (Spearman’s r � 0.79, P � 0.001; Fig. 5C).

Out of 41 neurons that had paradoxical posttarget activity,
39 neurons showed a significant positive correlation between
the SRT and the termination time (Fig. 7, abscissa). The
average correlation coefficient for the population of neurons
was significantly different from 0 (P � 0.001, t-test after
Fisher’s z-transform). These data suggest that paradoxical

posttarget activity can account not only for a categorical
difference in the SRT between big- and small-reward trials but
also for a trial-by-trial difference in the SRT among small-
reward trials. In particular, shorter termination times were
associated with shorter SRTs and longer termination times
were associated with longer SRTs.

Burst and buildup neurons show paradoxical
posttarget activity

It is postulated that the primate SC contains two types of
movement-related neurons: one population exhibits only a
presaccadic burst of activity (burst neurons) and the other
population exhibits a buildup of activity (buildup neurons) that
is usually followed by a presaccadic burst (Munoz and Wurtz
1995). It has been shown that SC neurons tend to show buildup
or prelude activity if their visual responses are modulated by
reward expectation (Ikeda and Hikosaka 2003) and buildup
neurons tend to show an enhancement of presaccadic activity
when a big reward is expected (Ikeda and Hikosaka 2007). We
therefore asked whether there was any relation between the
paradoxical posttarget activity and the buildup activity.

For this purpose we calculated a buildup index for each
neuron (see METHODS) and plotted in Fig. 7 the buildup index
against the correlation coefficient between the SRT and the
termination time, a measure that characterized the paradoxical
activity (as shown in Figs. 4C and 5C). There was no signifi-
cant correlation between these parameters (Spearman’s r � �0.05,
P � 0.77).

We then classified movement-related neurons into burst
neurons (buildup index �30 spikes/s) or buildup neurons
(buildup index �30 spikes/s) according to Munoz and Wurtz
(1995). According to this criterion, 45 neurons were classified
as burst neurons (including those shown in Figs. 4 and 5) and
17 neurons were classified into buildup neurons. We found that
both burst and buildup neurons showed the paradoxical post-
target activity (burst neurons, 32/45; buildup neurons, 9/17;
P � 0.18 by chi-square test). In addition, the correlation
coefficient between the SRT and termination time was not
significantly different between burst and buildup neurons (P �
0.98, t-test after Fisher’s z-transform).

The distribution of movement-related neurons having the
paradoxical posttarget activity considerably overlapped in
depth with those without the paradoxical posttarget activity:
the average (�SD) depth of the location of neurons with and
without paradoxical posttarget activity was 2.1 (�0.5) mm and
2.2 (�0.4) mm from the SC surface, respectively (P � 0.50,
t-test). This finding is consistent with the lack of apparent
differences in the paradoxical posttarget activity between burst
and buildup neurons in that burst neurons tend to be located
more dorsally than buildup neurons in the intermediate layers
of the SC (Munoz and Wurtz 1995).

Concurrent activation of bilateral movement neurons

The occurrence of misdirected saccades suggests that the
monkeys faced a motivational conflict after the onset of the
small-reward target: that is, the conflict between a saccade to
the internally desired target (the position associated with a big
reward) and a saccade to the externally instructed target (the
position associated with a small reward). In contrast, these
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FIG. 3. Animal performance. A: changes in SRT with changes in the
position-reward mapping. The SRT (mean � 1SD) is plotted as a function of
the numerical position of trials in each block for monkey T (top) and monkey
S (bottom). Big-reward trials are indicated in blue and small-reward trials in
red. Both directions of saccades are combined. B: an example of occasional
misdirected saccades observed in small-reward trials (x–y plot of eye position).
The monkey first made a saccade in error to the position associated with a big
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visible target associated with a small reward (“left-down”). FP, fixation point;
T, saccade target.
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saccade goals were consistent with each other on the appear-
ance of the big-reward target. How, then, is the motivational
conflict reflected in collicular neuronal activity? To answer this
question, it would be helpful to examine the activity of move-
ment-related neurons in both colliculi, even though a saccade
to a given location is controlled, in principle, by the contralat-
eral SC (Sparks 1986).

Although we recorded from only one neuron at a time, we
could assume that for each neuron sampled (“orthoneuron”) its
counterpart is present in the opposite SC with identical re-
sponse properties to the orthoneuron but with the response field
located in the opposite direction (“antineutron”) (Amador et al.
2004). Consider big-reward trials in which the saccade target
appears in the response field of the orthoneuron (Fig. 8A) and
assume that we have recorded its activity (e.g., Fig. 4A, right
column, blue background). For the antineuron (Fig. 8B), the
saccade target would appear opposite the response field. This is
exactly the situation that occurs to the orthoneuron in the next
block on big-reward trials (Fig. 8C) (e.g., Fig. 4A, left column,
blue background). In other words, the antineuron, on big-
reward trials, should behave identically as the orthoneuron
behaves on big-reward trials in the next block. Following the
same logic, when the saccade target appears in the response
field of the orthoneuron on small-reward trials (Fig. 8D) (e.g.,
Fig. 4A, right column, yellow background), the antineuron
(Fig. 8E) should behave identically as the orthoneuron behaves
on small-reward trials in the next block (Fig. 8F) (e.g., Fig. 4A,

left column, yellow background). We can now estimate the
activity of movement-related neurons on the other (nonre-
corded) side of the superior colliculus and compare it with the
activity of movement-related neurons on the recorded side, as
shown in the following text.

Figure 9A illustrates the ensemble average activity for all of
the movement-related neurons sampled in this study (n � 62),
separately for big-reward trials (left) and small-reward trials
(right). On big-reward trials (Fig. 9A, left), movement-related
neurons were active only in the SC contralateral to the target
(c-SC), as exemplified in Figs. 4A and 5A, blue background.
On small-reward trials (Fig. 9A, right), movement-related neu-
rons were concurrently active on both sides approximately 100
ms after target onset, as exemplified in Figs. 4A and 5A, yellow
background. Moreover, activity in c-SC was weaker and more
protracted on small-reward trials (Fig. 9A, right) than that on
big-reward trials (Fig. 9A, left), which may be discerned in
Figs. 4A and 5A, right column. This protracted c-SC activity is
likely to be a direct cause of the delayed saccades on small-
reward trials because a saccade is thought to be controlled by
the SC contralateral to the direction of the saccade (Sparks
1986). How then could the neurons in the ipsilateral SC (i-SC)
determine the timing of the saccade initiation? One possibility,
shown in Fig. 9B (right), is that the neurons in c-SC are
inhibited by the neurons in i-SC through the mutual inhibitory
mechanism between two sides of the SC (Munoz and Istvan
1998; Takahashi et al. 2005). Only after the inhibition caused
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FIG. 4. An example of paradoxical post-
target activity. A: firing properties of a move-
ment-related neuron recorded in the left su-
perior colliculus (SC). The rastergram is
aligned on the onset of the target (time � 0)
and shown separately for the target within
the response field (right) and away from it
(left). Blue backgrounds depict big-reward
trials and yellow backgrounds depict small-
reward trials. In raster displays, black dots
represent individual action potentials and red
triangles denote the time of saccade onset.
Misdirected saccades are not shown. Top:
white dots represent the saccade target; yel-
low dotted circles represent the response
field of this neuron; and gray arrows indicate
the animal’s saccade. Bottom: the activity
during the memory-guided saccade task is
shown separately for the saccade made into
the response field (right, “RF trials”) and the
saccade away from it (left, “nRF trials”);
gray triangles denote the time of a GO signal
for a saccade (offset of the fixation point);
blue continuous lines represent the spike
density function. The buildup index was 4.95
for this neuron. B: the raster display for trials
in which the small-reward target was pre-
sented away from the response field. The
trials are sorted according to SRT. The ras-
tergram is aligned on the onset of the target.
Red triangles indicate the time of saccade
onset. V, vertical eye position; H, horizontal eye
position. C: termination time (see METHODS) is
plotted against SRT. One additional trial not
shown has the termination time at 0 due to
the lack of spikes; see the top trial in B.
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by i-SC has been removed could the neurons in c-SC trigger a
saccade, as demonstrated in Figs. 4B and 5B. The cause of the
activation of neurons in i-SC (paradoxical posttarget activity)
may be the motivational drive for a big reward, since the output
of i-SC would cause a saccade to the position where a big
reward should be available. By contrast, on big-reward trials
(Fig. 9B, left) both the motivational drive and the task instruc-
tion would converge on the c-SC, which then inhibits i-SC
completely and quickly causes a saccade to the target.

D I S C U S S I O N

In the present study, we investigated neural mechanisms of
the conflict-induced response delay in the SC, a motor structure
close to the oculomotor output. We observed that the appear-
ance of the small-reward target in the visually guided biased
saccade task consistently induced a substantial response delay.
This response delay was likely to originate from motivational

interference on task instructions, a discrepancy between what
the animal wanted to do and what the animal had to do. Indeed,
the animal occasionally made misdirected saccades to the
position associated with a big reward, even though there was
no visible target at that location; in fact, the saccade target had
been illuminated away from it. Using this behavioral model of
motivational conflict, we found that movement-related neurons
in the SC exhibited a transient burst of activity after the onset
of the small-reward target that was outside their response field
(paradoxical posttarget activity). The time at which the para-
doxical posttarget activity terminated was correlated with the
time of saccade initiation on a trial-by-trial basis. Furthermore,
the appearance of the small-reward target triggered simulta-
neous activation of movement-related neurons in the SC on
both sides.

How might the paradoxical posttarget activity be related to
cognitive or sensorimotor functions that have previously been
characterized? First, the paradoxical posttarget activity might
be related to a shift of attention. It is likely that the monkey
paid attention to the position associated with a big reward when
it was performing the visually guided biased saccade task. On
the other hand, it is well known that, when a salient visual
stimulus is presented abruptly, attention is quickly and invol-
untarily drawn to the position of the stimulus (Hikosaka et al.
1993; Remington et al. 1992). In our saccade task, attention
should be drawn to the target immediately after its onset,
irrespective of whether it is associated with a big reward or a
small reward. According to the attention hypothesis, the para-
doxical posttarget activity would then reflect a shift of attention
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FIG. 5. Another example of paradoxical
posttarget activity for a movement-related
neuron recorded in the left SC. A–C: same
conventions as in Fig. 4. The buildup index
was 15.75. Note that the paradoxical post-
target activity of this neuron was preceded
by anticipatory pretarget activity.

TABLE 1. Classification of saccade-related SC neurons

Paradoxical Post-
Target Activity Total

(�) (�)
Anticipatory pre-target activity

(�) 17 11 28
(�) 24 10 34

Total 41 21 62

Values denote the number of neurons.
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to the ipsilateral, small-reward-associated target because the
activity occurred just after its onset. However, this interpreta-
tion is inconceivable because there was no paradoxical post-
target activity when the same ipsilateral target appeared but
associated with a big reward. Therefore the paradoxical post-
target activity does not seem to reflect a shift of attention.

Second, the paradoxical posttarget activity might be related
to motor preparation. Saccade motor preparation appears to be
represented in the SC by buildup neurons, rather than burst
neurons (Munoz and Wurtz 1995). However, we did not find
evidence that either buildup neurons or burst neurons prefer-
entially exhibit the paradoxical posttarget activity. A problem
in this analysis was that the buildup indices of SC movement-
related neurons were distributed as a continuum and the clas-
sification into burst and buildup neurons is deemed arbitrary, as

indicated previously (e.g., McPeek and Keller 2002b; Port and
Wurtz 2003; Quaia et al. 1999). An alternative analysis we
performed was to examine the correlation between the buildup
index and a measure that characterized the paradoxical activity
(Fig. 7) disregarding the cell classification. The result of this
analysis showed no significant correlation and thus did not
support the idea that the paradoxical posttarget activity is
related to motor preparation.

After the preceding considerations, we feel that it is more
fruitful to discuss the paradoxical posttarget activity as part of
neural processes that are used to resolve motivational conflict.
Our findings suggest that motivational conflict is represented in
the SC, a structure close to the motor output, and therefore the
correct motor response is inevitably delayed. This conclusion
is in line with a presumed mechanism of response inhibition
due to sensory conflict. Studies on human subjects, using
lateralized readiness potentials in a stimulus–response incom-
patibility task or in versions of the Eriksen flanker task, have
identified activation of the motor cortex that may correspond to
the preparation of an invalid motor response before the execu-
tion of a correct motor response (De Jong et al. 1994; Gratton
et al. 1998; Taylor et al. 2007; Ullsperger and von Cramon
2001). Furthermore, it has been shown that bilateral motor
cortices are concurrently active under response conflict condi-
tions such as a version of the Stroop task (DeSoto et al. 2001).
These data, together with our findings, suggest that subthresh-
old activation of an incorrect response leads to a delay in the
execution of a correct response through the reciprocal inhibi-
tory mechanism between two sides of motor structures close to
output, such as the primary motor cortex (Kujirai et al. 1993)
and SC (Munoz and Istvan 1998; Takahashi et al. 2005). Yet,
it is also possible that such reciprocal inhibition eventually
contributes to the resolution of conflict once neural activity
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responsible for the correct response prevails over the other
(Schlag et al. 1998).

It is generally thought, however, that response conflict is
dealt with in the frontal cortical areas involved in higher-level
planning. Specifically, the lateral prefrontal cortex (LPFC) and
the medial frontal cortex including the anterior cingulate cortex
(ACC), supplementary eye field (SEF), and presupplementary
motor area (pre-SMA) are implicated in the monitoring or
resolution of response conflict originating from stimulus inter-
ference (Isoda and Hikosaka 2007; MacDonald 3rd et al. 2000;
Nachev et al. 2005; Stuphorn et al. 2000; Taylor et al. 2007) or
emotional interference (Davis et al. 2005; Etkin et al. 2006). It
is unclear whether conflict is resolved within these cortical

areas so that only the final command is sent to downstream
motor structures. It is proposed that the prefrontal-SC pathway
has a mechanism that can prevent competing commands from
arising simultaneously (Schlag-Rey et al. 1992). However, our
data show that response conflict exists in the SC. It is also
shown that parallel processing of different saccade programs
can occur in the SC (McPeek and Keller 2002a). These obser-
vations suggest that, with respect to the ocular motor system,
mutually competing motor commands can converge on the SC
at the same time, without being fully resolved at the cortical
level. Such a conflict may then be resolved in the SC, to allow
a selected motor program to be issued. A role of cortical areas
involved in conflict resolution may thus be to inhibit irrelevant
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motor programs on one hand while facilitating relevant motor
programs on the other at the level close to motor output.
Indeed, such a mechanism is shown in the limb-motor system
under a sensory conflict (Taylor et al. 2007).

The present finding suggests that conflict-related cortical
areas need to gain access to the SC to resolve motivational
conflict of eye movement. How, then, can such top-down
control signals reach the SC? There are two major pathways
whereby the above-cited cortical areas can influence SC activ-
ity: direct cortico-SC routes and indirect cortico-basal gan-
glia-SC routes. It has been shown that the LPFC, ACC, and
SEF have direct projections to the SC (Huerta and Kaas 1990;
Leichnetz et al. 1981; Shook et al. 1990). A recent study shows
that prefrontal neurons indeed send task-selective signals di-
rectly to the SC in an antisaccade task that invokes sensory
conflict (Johnston and Everling 2006). The direct cortical
routes are thought to mediate glutamatergic excitatory actions
on target SC neurons (Creutzfeldt 1995). By contrast, the
indirect routes through the basal ganglia are equipped with
long-range GABAergic inhibitory mechanisms, which allow
both facilitation of a relevant saccade program and inhibition
of irrelevant saccade programs in the SC through the so-called
direct and indirect pathways, respectively (Hikosaka et al.
2000; Mink 1996). It is known that the LPFC, ACC, SEF, and
pre-SMA all project to an input station of the basal ganglia, the
caudate nucleus (Huerta and Kaas 1990; Parthasarathy et al.
1992; Selemon and Goldman-Rakic 1985; Shook et al. 1991;
Takada et al. 2001). Furthermore, a group of caudate neurons
shows a higher level of saccade-related activity on small-
reward trials than on big-reward trials, and this activity is
inversely related to saccade latency (Watanabe et al. 2003b).
This suggests that the caudate nucleus may be involved in the
resolution of motivational conflict. In support of this, the
blockade of the dopamine D2 receptor within the caudate
nucleus results in a further response delay on small-reward
trials (Nakamura and Hikosaka 2006). Further studies are
necessary to clarify specific contributions of each of the cor-
tical and basal ganglia structures to conflict resolution.

In summary, our data show that a conflict between a task
demand and a motivational demand exists in the SC, a subcor-
tical structure close to the motor output. Under this motiva-
tional conflict, overt saccade behavior continues to be sup-
pressed by the competitive intercollicular interactions until a
motor command for one action prevails against the other. A
role of the conflict-related cortical areas may be to tip the
balance between the two sides of the SC using their direct
connections or indirect connections through the basal ganglia.
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