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Abstract, Two measures from information theory,
transmitted information and channel capacity, can
quantify the ability of neurons to convey stimulus-de-
pendent information. These measures are calculated
using probability functions estimated from stimulus-re-
sponse data. However, these estimates are biased by
response quantization, noise, and small sample sizes.
Improved estimators are developed in this paper that
depend on both an estimate of the sample-size bias and
the noise in the data,

Introduction

Brain functions depend upon mechanisms that encode,
process and transmit information. Despite decades of
study, many basic neuronal mechanisms, such as the
intrinsic neuronal code used by the brain to transmit
information, remain unknown. Thus, in quantifying a

neuron’s response some arbitrary measure of its activity.

must be chosen. It is generally accepted that the timing
of neuronal action potentials carries information. How-
ever, how the signal is encoded by that timing is not
known. One approach to solving this coding mystery is
to assume different codes, and then to compare the
amount of stimulus-dependent information conveyed
by each code.

Information theory can be helpful in quantifying
this comparison (Eckhorn and Pdpel 1974; Eckhorn et
al. 1976; Fuller and Looft 1984; Optican and Richmond
1987). However, accurate estimation of transmitted in-
formation from experimental data faces three obstacles.
First, the data must be quantized, because the discrete
form of information theory is most easily applied to
biological problems. Second, biological systems often
have highly variable or noisy responses. Third, experi-
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mental considerations often limit the number of replica-
tions per condition, resulting in small sample sizes.
In this paper we present a method for removing the
biases from information measures caused by these
three problems.

Information is usunally calculated by converting ex-
perimental data into discrete inputfoutput histograms
called contingency tables. However, information calcu-
lated from contingency tables is known to be biased
upward. This bias is additive, and if known it may be
subtracted off to improve the estimation of information
{Carlton 1969; Fagen 1978). There is an exact equation
for this bias, but its application requires complete
knowledge of all the stimulus-response probabilities
{Carlion 1969). Unfortunately, these probabilities are
usually not known. Severai approximations have been
developed, but these either overstate the bias for small
sample sizes (Miller 1955; Carlton 1969; Macrae 1971),
or require assumptions about the distribution of proba-
bilities underlying the process (Macrae 1971).

Fagan (1978) corrected the sample-size bias in one-
dimensional tables by two methods. In one method, an
estimate of the sample bias was obtained with the
jack-knife statistical technique. In the second method,
that estimate was obtained from first-order approxima-
tion formulae. Fagen’s methods do not deal with the
quantization probiem nor do the closed-form approxi-
mations sccm applicable to neurophysiological data,
where the underlying distributions are usually not
known.

To avoid the quantization artifact, Sakitt proposed
a method of forming contingency tables by quantizing
responses according to their rank order, rather than
their value (Sakitt }1980; Sakitt et al. 1983). However,
this technique can not be applied to multidimensional
data (Optican and Richmond 1987), and it biases the .
information upward at either end of the data range
{Crowe et al. 1988).

Optican and Richmond (1987) used a non-paramet-
ric kernel estimation method to minimize the quantiza-
tion bias in the contingency tables, but did not correct.
for sample-size bias. :
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Thus, none of the available methods for calculating
information measures accounts for all three bias
sources presented above. This paper develops such a
method for estimating transmitted information and
channel capacity from multidimensionat data. The new
method is applied to simulated data sets with known
distributions, and to data from individual neurons
recorded in primate visual cortex.

Methods

1 Response quantification

The mean firing rate is often used as a univariate
measure of neuronal response. However, the responses
of neurons are clearly multivariate (Eckhorn et al.
1976; Cataneo et al. 1981; Fuller and Looft 1984;
Richmond and Optican 1987; Richmond and Optican
1990). In making unfounded assumptions about how
stimulus-dependent ncuronal messages are encoded
some aspects of neuronal function may be neglected.
Thus, a complete, multivariate representation must be
used to quantify a neuron’s responses. The principal
component (or Karhunen—Loéve) decomposition of a
continuous representation of neuronal activity may be
used as a complete, multidimensional quantification of
a neuron’s response (Richmond and Optican 1987).

2 Transmitted information

The amount of information transmitted by a coded
message is a measure of the reduction in the receiver’s
uncertainty about which message was sent. The amount
of information transmitted about the particular stimu-
lus s;, averaged over all the responses in the set R, is the
conditional transmitted information, T(s;; R):
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The summation is over all the members of the set R.
The average transmitted information can be calculated
as the weighted sum of all the conditional transmitted
informations:

T(S; R) = p(sT(s;; R) . (2)

3 Channel capacity

Use of a communication channel is controlied by set-
ting the a priori probabilities of stimulus occurrence,
P(5;). Altering these probabilities can change the reduc-
tion in uncertainty caused by receipt of a message.
Thus, transmitted information should be regarded as a
function of both the channel itself and the way the
channel was used in the experiment (Blahut 1987):

T(S; R) = T(p(s;); p(ricls;)) - (3)

The channel capacity is a measure of the maximum
amount of information that the channel is capable of
transmitting with any a priori input distribution:

C = max T(p(s;); P(re }5;)) - (4)
pls;)

Blahut gives an iterative procedure for fiiding the set of

stimulus probabilities that maximizes the information

transmitted by a given channel (Blahut 1972, 1987).

4 Joint stimulus-response probability function

An experiment provides the data needed to calculate
the joint probability of occurrence of any stimulus-re-
sponse pair, p(s,, r.}, since that is just the probability
that a given stimulus and a given response occurred
together in the experiment. This probability function is
usually estimated by quantizing the data.pairs into bins
to form a histogram. This quantization moves values
near the edges of a bin to its center, which reduces the
data’s variability and thus decreases its entropy, Since
the transmitted information is the difference between
the prior and posterior entropies, decreasing the poste-
rior entropy will bias the transmitted information up-
ward. This quantization artifact can be reduced by
using the kernel approach to obtain an estimate of the
joint pf, p(s;, r.) (Fukunaga 1972; Silverman 1986;
Optican and Richmond 1987). In kernel estimation,
each data point is replaced with a continuous density
function, centered on that point. The kernel estimate is
the average of all these density functions. Fukunaga has
suggested that a good kernel for such an estimator is a
Gaussian pulse with the same variance as the distribu-
tion of the data points themselves. Such a kernel has
the advantage that the statistical properties of the data,
up to the second moment, are taken into account
{Fukunaga 1972).

The kernel estimate of the multivariate pdf (for a
single stimulus) based on »; data points is:
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where g is the kernel function, r is the v-dimensional
response vector, and r, is the k-th v-dimensional data
vector,
The multivariate Gaussian kernel function is given
by (Fukunaga 1972):

gry 1., h) = (2m) 2 | 2|12

xexp[— S (T—r)E"! (r—rk)] ©)

where X is the covariance matrix of the kernel, |X| is its
determinant, / is given in (8), and z'denotes the vector
transpose of z. A different covariance matrix, X, is used
in the kernel for each subpopulation:
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where T; is the average of all »n; responses to the given
stimulus.

The function ki gives the kernel estimator its depen-
dence on the sample size:

hny) = 0% ®
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where §; is a measure of the intrinsic dimensionality of
the rcsponse space (9), and the exponent value of 1/3
gives the estimator uniform consistency (Fukunaga
1972).

The value of §; is usually the number of dimensions
in the response vanable However, in our method the
joint probability function is estimated separately for the
subpopulation formed by the responses to each individ-
uval stimulus. Thus, §; should measure the number of
degrees of freedom of each subpopulation, rather than
the number of dimensions in the respense measure. For
example, suppose three-dimensional responses to stimu-
lus s, fall along one line, and to s, fall along another
line. Here, each set of responses (considered separately)
is only unidimensional. One way to determine this
intrinsic dimensionality is from the proportion of total
variance in the response subpopulation distributed
along each response dimension. However, for both
simulated noisy data and real neuronal data, an esti-
mate based on the proportion of the total standard
deviation distributed along each dimension gave better
convergence with small sample sizes. Suppose, for the
j-th stimulus-response subset, the standard deviation
along the i-th dimension is 4;. Suppose the maximum
standard deviation is along the m-th dimension. An
estimate of the number of degrees of freedom in the j-th
subpopulation is then given by the normalized sum of
the standard deviations:

1 v
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where v is the number of dimensions in the response
space.

%

5 Multidimensional density estimation
with a non-separable kernel

In a multivariate code the X, matrix obtained for the j-th
stimulus-response subset of the data is not always
diagonal. Thus, the multivariate kernel is not generally
separable and can not be calculated by multiplying a set
of one-dimensional kernels together. However, these
non-separable kernels can be generated easily by
combining a lincar transformation of the data with a
Monte Carlo simulation technique for estimating proba-
bility density functions. Basically, the procedure obtains
the desired probability function by 1) transforming to a
domain where the distribution is separable (Guttman et
al. 1971), 2) generating an appropriately distributed set
of points, 3) transforming the set of points back to the
original data domain, and 4) building a histogram of the
points from the transformed set.

6 The unbiased estimators

The upward bias of transmitted information () and
channel capacity (C) calculated using the kernel esti-
mate of p(s;, r,) is shown in panels a and b of Fig. 1 for
three-dimensional simulated data.

To understand where this upward bias comes from,
suppose that the stimulus and response are completely
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Fig, 1a—d. Dependence of transmitted information on sample size for
simulated data. The data for the analysis in & and ¢ were generated by
a three-dimensional pseudo-random process (two components were
independent Gaussian noise, and the third component was indepen-
dent uniform noise). No information should have been transmitted by
these data. Data for b and d were generated by adding a deterministic
signal {step size five times the standard deviation of the noise) to the
stochastic process used in a. The horizontal dotted line is the amount
of information carried by the deterministic component of the signal.
In a and b, T is the raw transmitted information, T, is the bootstrap
estimate of the bias, T, is the noise-factor-weighted bias estimate, and
C is the raw channel capaclty (nearly identical to T in this example)
n ¢ and d, T, is an estimator based on the difference (T’ — T). Tis
the improved estimator based on the difference (T — T,,). 5 is the
improved estimator of channel capacity. Note that noise-factor
weighting accelerates convergence to the correct value

unrelated, i.e., the response contains zero bits of infor-
mation about the stimulus. The only distribution of
points in the p(s;,T,) matrix that yields zero bits of
information is the one that has exactly the same distri-
bution in every row (ie., for every stimulus). If the
stimulus-response relation is random, then as N in-
creases. the distribution actually found in each row will
converge to the same distribution. However, for small
values of N, the bins in each row will not be filled
identically. This unequal filling will result in the appar-
ent transmission of information. This non-zero value is
a sample-size bias in the estimate of transmitted infor-
mation. Note, however, that in the case of noise-free
data, the bins in each row would be filled correctly,
irrespective of N. Thus, the bias is dependent upon both
sample size and noise.

Our technique for eliminating bias depends on
building many artificial stimulus-response data sets, and
thus is similar to Fagen’s jack-knife technique (Fagen
1978). Each data set is made by randomly shuffling the
real data set, which creates a new data set of the same






