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SUMMARY

Sensory processing in the brain is thought to have
evolved to encode naturally occurring stimuli effi-
ciently. We report an adaptation in binocular cortical
neurons that reflects the tight constraints imposed
by the geometry of 3D vision. We show that the
widely used binocular energy model predicts that
neurons dedicate part of their dynamic range to
impossible combinations of left and right images.
Approximately 42% of the neurons we record from
V1 of awake monkeys behave in this way (a powerful
confirmation of the model), while about 58% deviate
from the model in a manner that concentrates more
of their dynamic range on stimuli that obey the con-
straints of binocular geometry. We propose a simple
extension of the energy model, using multiple sub-
units, that explains the adaptation we observe, as
well as other properties of binocular neurons that
have been hard to account for, such as the response
to anticorrelated stereograms.

INTRODUCTION

Evolutionary pressures have acted on a brain processing inputs

from the natural world. Natural inputs are not random but are

structured in particular ways. Visual inputs have significant

spatial correlations and a characteristic Fourier power spectrum

(1/f2). Auditory inputs, on the other hand, can be divided into

separate classes, each with their own particular structure, e.g.,

vocalizations which tend to be harmonic and more steady-state

or environmental sounds that are nonharmonic and more tran-

sient (Smith and Lewicki, 2006). One should therefore expect

that instead of being equally capable of processing any inputs,

the brain should have specialized to best deal with these natural

stimuli. This is a key prediction of the efficient coding hypothesis

(Attneave, 1954; Barlow, 1961), which has been assumed to be

a general design principle for the brain. It states that one driving

force behind the evolution of the brain is the goal to represent

a maximum of information about the external world using a

minimum of energy and neural resources.
Recent studies have provided evidence for this hypothesis in

both the auditory (Smith and Lewicki, 2006) and visual domain

(Field, 1987; Schwartz and Simoncelli, 2001; Simoncelli and

Olshausen, 2001). In particular, they show that visual processing

is specialized for the Fourier statistics of monocular natural

images and exploits the redundancy introduced by the spatial

correlation in natural images. In this paper, we investigate an

even more striking redundancy that is a consequence of stereo-

vision. Our two eyes view the world from slightly different van-

tage points. The resulting differences between the two eyes’

images (binocular disparities) are used by the brain to create

a three-dimensional percept of the world. At the same time,

the images in the left and the right eye are highly redundant: in

most cases local regions of the right image will be closely

matched by simply translating the appropriate part of the left

image. What we call a ‘‘simple translation’’ is a very specific sub-

set of all the possible ways in which the image in the left eye

could in principle differ from that in the right eye. In the labora-

tory, it is possible to create binocular images that employ all

possible left-right differences: those that occur in the real

world—natural ones (or physical disparities)—and artificial ones

(nonphysical disparities). Formalizing these differences allows

us to embed both physical and nonphysical stimuli within the

same continuous stimulus space and hence to explore the

response of binocular neurons within that space.

At the earliest point where inputs from the two eyes converge

onto single neurons (striate cortex), the firing rate of many

neurons depends upon binocular disparity (Barlow et al., 1967;

Nikara et al., 1968; Poggio and Fischer, 1977). The responses

of disparity selective neurons are well explained by the very suc-

cessful binocular energy model (Cumming and DeAngelis, 2001;

Ohzawa et al., 1990) in which the output from receptive fields in

both eyes is linearly combined by V1 simple cells and this sum is

then passed through an output nonlinearity. This simple scheme

naturally places limits on the extent to which binocular regulari-

ties in the inputs can be exploited. We explore these limits using

a simple stimulus that allows the gradual transition from physical

to nonphysical stimuli to be studied: the sum of two sinusoidal

luminance gratings.

First, we show that the binocular energy model predicts max-

imum responsiveness to nonphysical left and right image pairs.

Second, we recorded responses of disparity-selective neurons

in the striate cortex of awake monkeys. Approximately 42% of

the neurons behave as the energy model predicts, with either
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Figure 1. Geometric Constraints

(A) Luminance profiles of a compound grating

consisting of two sine-wave gratings with fre-

quency-ratio 1:2 are shown, as presented to the

left eye (solid green) and the right eye (solid red).

The left column shows the two patterns translated

in space with respect to each other. This fixed spa-

tial offset corresponds to a greater interocular

phase difference for the higher frequency compo-

nent than for the lower frequency one. (Ratio of in-

terocular phase difference = frequency ratio.) The

right column displays each component shifted by

the same phase difference, resulting in different

patterns in left and right eyes. The top left panel

illustrates a physical stimulus, while the top right

panel shows a nonphysical one which would not

be produced by natural viewing. The dashed lines

show the effects of phase or position shifts on the luminance profile of a bar. The phase shift in the top right column clearly leads to a change in shape (dashed

green versus red in top right panel).

(B) The top two panels illustrate the principle differences between the receptive field (RF) profiles (left eye in green, right eye in red) of a binocular neuron which

signals disparity: position shift (left) and phase shift (right). The bottom panels show the response of an energy model with such RFs to position disparity in a broad-

band stimulus: even-symmetric tuning curve for a neuron with position disparity and odd-symmetry for a neuron with phase disparity.
their maximum or their minimum response elicited by nonphysi-

cal combinations of interocular phase difference. The other 58%

of neurons deviate from the model’s predictions, and these

deviations are systematically in the direction that exploits the

regularities in the natural inputs, as predicted by the efficient

coding hypothesis.

Finally, we show how this specialization for physical disparities

can be explained by extending the existing standard model, if

real neurons represent the sum of multiple energy model-like

subunits. This shows that combining multiple subunits can be

a useful strategy for exploiting the statistical regularities of vi-

sual inputs. It might thereby provide an explanation for another

recent observation (Rust et al., 2005) that indicates the presence

of multiple excitatory and suppressive spatiotemporal subunits

within V1 receptive fields.

RESULTS

Energy-Model Predictions
The energy model is part of a family of generalized linear-non-

linear (LN) models describing the responses of V1 neurons

(Chichilnisky, 2001; Rust et al., 2005). During the linear stage of

an LN neuron, the 2D image is multiplied with the neuron’s 2D

receptive field, yielding a single scalar value that represents

the effect of the image on the RF. The scalar value is then passed

through an output nonlinearity (typically parameterized with an

exponent), the result of which determines the spike rate of the

neuron. In the binocular energy model, there are two separate

receptive fields (RF), one for the left and one for the right eye,

and their scalar responses are summed linearly, and this sum

is then passed through an expansive output nonlinearity. The

output nonlinearity means that the neuronal activity is enhanced

when left and right RFs produce similar responses, and it is this

that confers disparity selectivity on the cell. The top row of

Figure 1B shows two examples for such receptive fields—green

for the left and red for the right eye (1D cross-sections, the sec-

ond dimension is typically well approximated by a Gaussian

and can be safely ignored for the following discussion). The
148 Neuron 57, 147–158, January 10, 2008 ª2008 Elsevier Inc.
RFs are well described by Gabor functions. There are two princi-

ple ways in which the cell can encode disparity: (1) the left and

right receptive fields are identical up to a translation (‘‘position

disparity’’; Figure 1B top-left) or (2) receptive fields in the two

eyes are related by a fixed phase shift applied to all frequency

components (‘‘phase disparity’’; Figure 1B top-right) (Ohzawa

et al., 1990; DeAngelis et al., 1991; Fleet et al., 1996). Let’s

take the example of a position shift. At the bottom left of Fig-

ure 1B we see the response (solid blue) to a broadband stimulus

(stimuli in the real world are ‘‘broadband’’ in the sense that they

consist of many Fourier components across a broad range of fre-

quencies), with the displacement (‘‘stimulus disparity’’) between

the left and the right plotted along the x axis. The response peaks

when the displacement between the images coincides with the

displacement of the receptive fields. The model cell in the right

column of Figure 1B (solid blue) has a phase disparity, and this

produces a characteristically asymmetrical shape in the dis-

parity tuning curve. Figure 1A illustrates the difference between

position and phase shift in the stimulus. The solid lines in the

top left panel in Figure 1A show the profiles of a compound grat-

ing consisting of two sine-wave gratings with frequency ratio 1:2,

displayed individually in the panels below. The profile in the left

eye (green) is identical to that in the right eye (red) apart from

a positional displacement of Dx. It is important to note that as

a consequence of an identical positional displacement Dx in

both component gratings, the phase shift is different for each

component—for a fixed position shift Dx, the phase shift D4i

between the left and right Fourier component of frequency fi is

proportional to their frequency: D4i = Dx,fi (Fleet et al., 1996).

In the right column of Figure 1A, on the other hand, the luminance

profile in the left eye was phase shifted compared to the right eye

(an identical interocular phase difference is added to each

frequency component). However, as the two lower panels illus-

trate for F1 and F2, an identical phase shift implies different

physical displacements. The implication for a broadband pattern

can be seen in the top left and right panels of Figure 1A (dashed):

while a position-shifted broadband pattern (here an example

bar) is identical in the left and right eye up to translation, the
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Figure 2. Energy-Model Response

In both panels, the energy-model response is

shown in the parametric space spanned by vary-

ing the interocular phase difference for both com-

ponent gratings independently from each other:

on the x and y axis of this stimulus space we plot

the interocular phase differences between the

left and right eye for component 1, Df1, and com-

ponent 2, Df2. Since the stimulus (hence the re-

sponse) has a period of 360 degrees in both

dimensions, we show it for [�180 deg .180

deg]. The solid black parallel lines are part of the

same continuous line in this periodic space show-

ing combinations of interocular phase difference

that correspond to pure spatial translations of

the compound grating stimulus. This line passes

through the origin and has a slope of 2 due to

the 1:2 frequency ratio in our stimulus. The dashed

lines depict stimuli that are anticorrelated, i.e.,

those stimuli for which the contrast is reversed in one eye with respect to the other, prior to translation. The green line connects the response peak and trough,

and the blue double arrows indicate the distances to the physical disparity line. The energy model responses to the individual component gratings are shown on

the left and top of each panel.

(A) Energy model with a pure position disparity.

(B) Energy model with a pure phase disparity.
phase-shifted broadband pattern has a different shape in the left

from the right eye, something that never occurs in the real world.

Although real surfaces (e.g., tilted planes or curved surfaces) can

give rise to disparities that are not simple translations, no solid

surface produces equal interocular phase differences in all its

Fourier components.

In order to explore the relationship of those two regimes—

phase and position disparities—in both the stimulus and the

RFs, we have used the simplest stimulus that allows both to be

defined, a compound grating that consists of two frequency

components, f1 and f2. Figure 2 shows the energy model

response for the two example neurons in Figure 1B—one with

RFs related by a pure position disparity (Figure 2A) and one

with RFs related by a pure phase disparity (Figure 2B). The neu-

ronal response is given in a 2D space spanned by the interocular

phase differences for each component independently: the inter-

ocular phase difference for grating 1 is plotted on the x axis and

that for grating 2 on the y axis. Each physical displacement of the

image in the left with regard to the right eye implies a pair of inter-

ocular phase differences ðD41;D42Þ where D41=D42 = f1=f2.

We chose a value f2=f1 = 2 for our empirical study. Disparities

that result from the physical depth of planar patches in natural

viewing therefore form a line of slope f2=f1 = 2 in this space. We re-

fer to this line as the ‘‘physical disparity line.’’ Stimuli away from

this line do not occur in natural viewing (are nonphysical).

In the Experimental Procedures (Energy Model Predictions),

we show that the response of the energy model to a drifting

compound grating is linear in its components: the response to

a compound grating is simply the sum of the responses to the

component gratings individually. Since the response of an en-

ergy model to a single grating is a sinusoidal function of disparity

(Fleet et al., 1996), the peak and the trough of the combined

response will be separated by 180 degrees along each dimen-

sion (see Figures 2A and 2B). Hence, the line connecting peak

and trough (green in Figures 2A and 2B) has a slope of 1. This
means that peak and trough can never both lie on the physical

disparity line at the same time—at least one of them has to occur

for nonphysical stimuli. The two examples in Figure 2 illustrate

this: for energy model neurons with no phase disparity, the

maximum response is elicited by a naturally occurring disparity

(Figure 2A). However, in such neurons, eliciting the minimum re-

sponse requires a nonphysical stimulus, one where each Fourier

component is shifted by 180 degrees, i.e., inverted (dashed lines

in Figures 2A and 2B). This means that only part of the dynamic

range is dedicated to stimuli that actually occur in the real world.

The same is true for an energy model constructed with a pure

phase disparity (Figure 2B). The maximum response is elicited

when D41 = D42 and equals the RF phase disparity, a stimulus

that is necessarily away from the physical disparity line. Note

that the response in Figure 2B is simply a translated version of

Figure 2A. This is true in general: any changes in either position

or phase disparity correspond to a mere translation of the re-

sponse surface but do not alter the relative location of maximum

and minimum responses. The relative location is also unaffected

by changes in the static output nonlinearity of the energy model.

Thus, all variations on the energy model (including hybrid models

that combine phase disparity and position disparity) exhibit

a common feature: the separation between maximum response

and minimum response is 180 degrees of phase on both axes.

This shared feature of energy models implies that part of a

neuron’s dynamic range is devoted to parts of this space that do

not correspond to realistic stimuli.

Neuronal Responses
We examined the responses of disparity selective neurons

(recorded from the striate cortex of two awake fixating monkeys)

to such stimuli, constructed by summing two sinusoidal lumi-

nance gratings, with spatial frequencies in the ratio 1:2. The

top row in Figure 3 illustrates the responses of one example

cell, which closely matches the predictions of the energy model.
Neuron 57, 147–158, January 10, 2008 ª2008 Elsevier Inc. 149
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The response to all combinations of interocular phase difference

is well predicted by the responses to individual components, as

expected from the energy model. Its response peaks for a phys-

ical stimulus, as implied by a model with no phase disparity and,

as a consequence, the lower end of its dynamical range is ded-

icated to nonphysical stimuli. The bottom row in Figure 3 shows

responses of a different cell that did not follow the model predic-

tions. This cell exploits the properties of naturally occurring dis-

parities—both peak and trough lie close to the physical disparity

line. Thus, all its dynamic range is devoted to physical stimuli.

The degree to which a single neuron exploits the properties of

physical disparities can be conveniently quantified by the short-

est distance from the physical disparity line to the location of the

peak and of the trough (blue arrows in Figure 2). The sum S of

these distances is 0 if both peak and trough lie on the line. Since

the responses of all energy models are identical up to translation

in our space, S is the same for all of them. From the geometry of

the space it follows that S = 90 deg,sin arctan 2 or about 80.5

degrees for the energy model (note the shortest distance is not

aligned with either axis, and the value of S depends upon the

slope of the physical disparity line). Because both axes represent

circular variables, the maximum possible value for this sum S is

�161 degrees, the shortest distance between adjacent sections

of the physical disparity line. We can therefore use S as a mea-

sure for how well adapted any one neuron is to physical images.

For the example neuron in Figure 3 that resembles the energy

model S = 81 degrees while for the other, adapted, neuron S =

16 degrees. Note that S is strictly positive and S = 0 is only

achieved when both peak and trough lie exactly on the physical

disparity line; any deviation due to sampling noise increases its

value so that the observed value of S would be greater than

0 even for a perfectly adapted neuron.

We show the locations of peaks and troughs for our sample of

45 neurons in Figure 4. It is striking that the locations of the peaks

Figure 3. Two Example Cells

The graphs in the left-most column show the re-

sponses to the individual gratings of which our com-

pound gratings are composed. The blue markers

represent the data (SEMs are smaller than marker-

size), and the red lines depict the best-fitting sinu-

soids plus output exponent. The right two panels

show the neuronal response to the compound

gratings, smoothed and unsmoothed. (A) shows

an example that behaves like the energy model

(S = 81 degrees). The neuron in (B) concentrates

its response near the physical disparity line (in

a way the energy model cannot, S = 16 degrees).

Solid and dashed lines represent physical and anti-

correlated disparities, as in Figure 2.

are clustered closely around the physical

disparity line, indicating some specializa-

tion for the properties of natural binocular

images. This observation alone can read-

ily be explained by the energy model, as

long as the majority of neurons have

only small phase disparities. However, if

that were the case, then the response
troughs would necessarily cluster away from the physical dispar-

ity line as explained above. What we find, however, is a distribu-

tion of troughs with two maxima, one near the physical disparity

line and one far away (Figure 4C, blue). This implies that there is

a subpopulation of neurons that has both peaks and troughs

near the physical disparity line (like our example in Figure 3B).

The deeper implication is a specialization for natural binocular

images in those neurons—dedicating the majority of the dy-

namic range to physical disparities—one that the energy model

cannot explain. Despite this phenomenon, the clustering of

peak responses around physical disparities is much stronger

than the clustering of troughs. This suggests that the coding

scheme used by the brain may attach a special significance to

response maxima. The distribution of troughs shows a second

peak around ± 80:5 degrees, compatible with an energy-

model-like population of cells with peaks near the physical dis-

parity line, and troughs therefore far away from it.

The adaptation to physical disparities that we observe auto-

matically implies a deviation from the energy model, but the

converse is not true: deviations from the energy model do not

in general produce this adaptation—deviations can also increase

the distance to the physical disparity line so that less, not more,

of the dynamic range is devoted to naturally occurring stimuli. In

order to quantify deviation from the energy model independent

of adaptation, we use another measure of distance in the interoc-

ular phase space: the Euclidian distance of the observed peak

from the energy model prediction, given the observed trough.

In Figure 5A we compare those two measures—the distance to

the energy model prediction and the total distance to the physi-

cal disparity line. First, we note that the upper half of the space

potentially occupied by neurons (borders are dashed) is almost

completely empty and all cells lie either close to the centerline

(energy model) or below it. This demonstrates the power of the

pressure for disparity-selective neurons to be adapted in this
150 Neuron 57, 147–158, January 10, 2008 ª2008 Elsevier Inc.
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Figure 4. Population Plot of Peak and

Trough Locations

(A and B) The location of peaks ([A], red) and

troughs ([B], blue) in the 2D space spanned by

the interocular phase difference in each compo-

nent (cf. Figure 2) is shown. Note that we double

the y axis to display the full, unbroken physical dis-

parity line going through the origin. Hence, each

data point is displayed twice (once filled, once

open). The green crosses show the size of the

median SEM.

(C) The distribution of distances of the peaks (red)

and troughs (blue) to the physical disparity line is

shown. The dashed lines represent a histogram

of the raw data. The solid lines show the distribu-

tion of the 10003 resampled data.
particular way. We find that whenever neurons deviate from

the energy model, they do so to decrease S and systematically

devote more of their dynamic range to signaling naturally occur-

ring disparities. The correlation between the two measures is

highly significant (Spearman’s r = � 0:77; p = 4 , 10�9). In our

sample of 45 neurons, 17 (38%) show a significant adaptation

(p < 0.05, by resampling, magenta dots in Figure 5). Of the 20 neu-

rons that deviate significantly from the energy model, all but one

do so in the direction of increased adaptation. The marginal dis-

tribution of neurons along the y axis (Figure 5B) confirms this find-

ing on the population level. The blue solid curve shows the distri-

bution of the 10003 resampled data (raw data in cyan). By

assuming that values S > 80.5 degrees are due to sampling noise

around energy-model-like neurons (true S = 80.5 degrees), we

can estimate the overall distribution of energy-model-like cells

(dashed blue curve, see Experimental Procedures). The area un-

der the dashed curve yields the total percentage of energy-

model-like neurons in our population: 42%. The remaining 58%

are at least partially adapted (S < 80.5 degrees).
A New Model
The new specialization of disparity-selective neurons we find can

be achieved by a relatively simple extension of the energy model

(illustrated in Figure 6). Conceptually, an adapted cell can be

constructed by combining two cells (C+ and C�), each of which

is a traditional energy model plus an expansive static output non-

linearity. Here, input from one of the cells (C�) is subtracted from

the response of the other (C+). The result is that the location

of the response maximum is largely determined by the position

of the peak for C+, and the response minimum is largely deter-

mined by the location of the peak for C�. Figure 6A demon-

strates this for compound gratings: if the peaks for C+ and C�
lie close to the physical disparity line (produced by position

disparity), then the model cell reproduces the adaptation we

observe. Figure 6B shows the response of the same model to

random dot stereograms (RDS, red lines). Both C+ and C� are

tuned-excitatory (TE) and incorporate an expansive output non-

linearity (an exponent of 3 in this example). The third panel of

Figure 6B shows the total response of the new model: its
Figure 5. Population Summary of Adapta-

tion

(A) The total distance, S, from the physical dispar-

ity line (quantifying adaptation) as a function of de-

viation from the energy model. Note that neurons

that deviate from the energy model lie below the

center line, showing adaptation to natural images

(correlation: Spearman’s r = � 0:77; p = 4,10�9).

Magenta circles denote cells for which the adapta-

tion is significant (S significantly smaller than 80.5

degrees). The green cross shows the size of the

median SEM. The red circles indicate our example

cells from Figure 3. The energy model prediction

for S is 80.5 degrees; for fully adapted cells S ap-

proaches zero. (S is inevitably greater than zero

since the measure is the sum of two positive

numbers.) The two gray areas show how far from

the theoretical prediction 68% of cells would fall in the case that all scatter was the result only of sampling noise. The dashed black lines result from geometric

constraints—it is impossible for a cell to lie outside them.

(B) Contains histograms showing the distribution of our neurons depending on their adaptation (cyan solid line indicating the raw data). The solid blue line shows

our estimate of the actual distribution (resampling 1000 times). The dashed blue line was obtained by mirroring the distribution of neurons (solid blue) right of the

energy model prediction (dashed gray line). It represents an unbiased estimate of the subpopulation of energy-model-like neurons in our sample.
Neuron 57, 147–158, January 10, 2008 ª2008 Elsevier Inc. 151
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preferred and antipreferred disparities are inherited from its

subunits and its overall tuning curve is odd-symmetrical, very

much as expected from an energy model with phase disparity.

We refer to these disparity selective input neurons (C+ and C�)

as ‘‘subunits’’ below. In order to avoid confusion, we shall refer

to the inputs to the energy model itself as binocular simple cells.

Note that although the parameters for our example model

shown in Figure 6 were not fitted to real data, they were chosen

to yield realistic responses to gratings and RDS. The particular

values for the disparities and spatial frequency tuning were cho-

sen such as to resemble the data of the example cell in Figure 3B.

The preferred disparity of subunit 1 is given by the location of the

peak in the 2D response surface in Figure 3B and the preferred

disparity of subunit 2 by the location of the trough. The RFs of

both subunits overlap extensively in each eye, but the exact

location does not affect disparity responses. We also emphasize

that the spatial frequency tuning curve is identical for both

subunits: the adaptation is purely due to combining subunits

followed by an additional output nonlinearity, not because of

different frequency responses of the subunits.

It is not essential that one subunit provide a subtractive input.

A similar result is obtained if a binocular cell of the tuned-inhibi-

tory (TI) type (one whose disparity tuning function is dominated

by a trough) (Poggio and Fischer, 1977) is summed with a cell

C+ (TE), as shown in Figure S1, available online. In this case

the TI cell must incorporate a compressive output nonlinearity.

What both implementations have in common is that one subunit

contributes a pronounced peak in the response, and a separate

Figure 6. Proposed Subunit Model

The responses to compound gratings (A) and RDS

(B) of an example subunit model (C) are shown.

The left two panels of (A) and (B) show the re-

sponses of the two individual subunits C+ and

C� that contribute to the model response (right

panel in [A] and [B]). In (B), the red lines are

responses to RDS and the blue lines to anticorre-

lated RDS. Both subunits are energy model neu-

rons (plus output exponent of 3) that only differ in

their preferred position disparity. Both are tuned

excitatory. Our model subtracts the response of

the second subunit from the first subunit, yielding

the odd-symmetric tuning curve on the right (the

baseline response to large disparities can easily

be provided by monocular input or a difference

in the baseline responses of the subunits). C+

and C� can be either disparity-selective simple

or complex energy model cells, with identical

responses in (A) and (B).

subunit contributes the pronounced

trough. We find that when linearly com-

bining two energy-model cells, it is im-

portant that we include a static output

nonlinearity in addition to the squaring

inherent to the energy model for the two

cells—linearly combining two energy-

model units without an additional output

nonlinearity cannot produce an adapta-

tion to encoding physical disparities.

The simplest form of our subtractive model assumes that all

the RFs in both subunits are identical up to a translation and

assumes that all subunits have exactly balanced inputs from

both eyes. Deviations from these simplifying assumptions have

little impact on the binocular responses we predict but can pro-

foundly affect other properties of model neurons, such as the RF

properties expected during monocular stimulation. In our sim-

plest subtractive model, cancellation of the inputs from two

subunits can even lead to no monocular responses in either

eye (resembling the striking property of many disparity selective

neurons in which the binocular response is much greater than

either monocular response). However, if the model simple cells

do not have exactly balanced inputs from the two eyes (com-

monplace in real neurons [Hubel and Wiesel, 1962; Prince

et al., 2002; LeVay and Voigt, 1988; Smith et al., 1997; Ohzawa

and Freeman, 1986b]) it is to easy produce monocular receptive

fields that resemble real complex cells. If the simple cells contrib-

uting to the subtractive subunit have stronger inputs from one

eye, while the inputs to the excitatory subunit are dominated

by the other eye, the result will be a neuron that is disparity selec-

tive yet appears monocular (no response to stimulation in one

of the eyes). Such responses have been noted in many studies

(Ohzawa and Freeman, 1986b; Read and Cumming, 2004a;

Smith et al., 1997) and are naturally explained in our new model.

Ocular imbalance is not necessary to produce monocular

responses in the additive version of our model (TE plus TI).

So far, the only assumptions we have made about the nature

of C+ and C� concern their disparity selectivity. Even if C+
152 Neuron 57, 147–158, January 10, 2008 ª2008 Elsevier Inc.



Neuron

Adaptation to Natural Binocular Disparities in V1
and C� were binocular simple cells, out model still produces an

adaptation. Such a neuron would be classified as simple by the

criteria used in physiological experiments (Kagan et al., 2002;

Skottun et al., 1991). As a result, at least two different implemen-

tations can yield adapted complex cells. In the first, hierarchical

one (illustrated in Figure 7A), the adapted neuron receives its

input from two nonadapted complex cells, which each receive

inputs from binocular simple cells. A second implementation

does not require an additional hierarchy of complex cells as

shown in Figure 7A. If all simple cell subunits, used to construct

the two complex cells, are combined in one step to form a com-

plex cell, an adaptation is produced, provided each simple cell

subunit is augmented by an output nonlinearity. The additional

output nonlinearity of the simple cell enhances the peak (or

trough) of the disparity response. Note that only two traditional

binocular simple cells of different preferred disparity (S1a and

S2a) are strictly necessary to produce an adapted simple cell

in either implementation. Four simple cells (S1a and -b and

S2a and -b) are necessary to create a complex cell.

In both formulations, two key features of the original energy

model are preserved: processing is linear up to the point of bin-

ocular combination, and a static output nonlinearity generates

sensitivity to disparity. However, the original energy model also

assumes (primarily for mathematical tractability) that all simple

cell subunits share the same phase disparity and position dis-

parity (Ohzawa et al., 1990). The empirical deviations shown in

Figure 5 force us to abandon this assumption.

The extensionswepropose havea profound impacton the long-

standing debate concerning the relative roles of position disparity

and phase disparity in generating the responses of complex cells

(Anzai et al., 1999a, 1999c; Cumming and DeAngelis, 2001; Fleet

et al., 1996; Nieder and Wagner, 2000; Ohzawa et al., 1997; Prince

etal., 2002;Qian, 1997;Wagnerand Frost, 1993). Our resultsdem-

onstrate for the first time that the responses of many neurons can-

not be summarized with a single pair of values for phase and po-

sition disparities. The second example in Figure 3 illustrates this

point: an analysis of responses to physical disparities (a cross-

section along the physical disparity line) reveals a pattern of odd

symmetry that has been used to infer the existence of a phase dis-

parity (Cumming and DeAngelis, 2001; Ohzawa et al., 1990). Our

examination of responses to other combinations of interocular

phase differences reveals that this inference is incorrect when

the responses are better described as the result of more than

one position disparity or more than one phase disparity.

This Model Explains Earlier Results
Finally, these data and the extended energy model we propose

throw new light on one of the few existing observations concern-

ing nonphysical disparities. Using stimuli in which the left eye’s

image is the photographic negative of the right eye’s image (anti-

correlated stereograms), several groups have reported that neu-

rons still show disparity selectivity but that the strength of this

selectivity is weaker than for correlated stereograms (Cumming

and Parker, 1997; Nieder and Wagner, 2001; Ohzawa et al.,

1997). Two modifications of the energy model have been pro-

posed to explain this attenuation. One model (Lippert and

Wagner, 2001) pointed out that passing the output of an energy

model through an additional static nonlinearity can explain the
result in some cells (although this cannot work for cells with

odd-symmetric tuning [Read et al., 2002]). A second model pro-

posed that a threshold is applied to monocular responses before

binocular combination (Read et al., 2002).

Our data provide a powerful test of these models because

responses to anticorrelated stereograms are part of the same

continuous space as responses to correlated (physical) stimuli.

They are a cross-section through our data running parallel to

the physical disparity line (dashed lines in Figure 2). Models

with thresholded monocular responses generate diagonally

elongated regions in plots like Figures 2 and 3, unlike any we

observed in real neurons. Simply adding an output exponent to

the energy model does not change the locations of the peaks

Figure 7. Two Implementations of Subunit Model

(A) The adapted neuron receives input from two energy model complex cells

(ODF) followed by output exponents alpha and beta. Each of two complex cells

C1 and C2, with different preferred disparities, receives input from four half-

squaring simple cells S1a to S1d whose receptive fields are shifted by p=2

with respect to its neighbor.

(B) The adapted neuron receives input directly from the same half-squaring

simple cells each followed by an output exponent a or b, respectively. Note

that in both implementations, (A) and (B), the relevant feature of each individual

disparity response (peak or trough depending on whether TE or TI cell) is

enhanced by the same overall output exponents 2a (subunit 1) and 2b (subunit

2). It is this common feature that produces adaptation in both models. Note fur-

ther that two binocular simple cells S1a and S2a are completely sufficient to

achieve adaptation in a simple cell with disparity responses identical to those

of the complex model in Figure 6. S1b and S2b are only needed to produce full-

wave rectification (adapted complex cell) and S1c, S1d, S2c, and S2d in order

to complete quadrature pairs, ensuring phase invariant responses to gratings.
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Figure 8. Comparison between Responses

to Correlated and Anticorrelated RDS and

Compound Gratings

(A and B) Responses to anticorrelated stimuli. For

the example neurons from Figure 3, the response

is shown to RDS (red, solid), anticorrelated RDS

(blue, solid), and correlated and anticorrelated

compound gratings (red and blue, dashed). For

the RDS responses, error bars (SEM) and the

best Gabor fit are shown. The compound-grating

responses are cross-sections of the smoothed

2D response surface shown in Figure 3, along

the physical disparity line (correlated) and its 180

degree phase-shifted equivalent (anticorrelated),

respectively. Note that the dashed and solid

curves are not expected to coincide even for the

energy model since the stimuli are different.

(C) Population summary of attenuation caused by

anticorrelation. Response attenuation for anticor-

related RDS is compared with that of compound

gratings (2G). The dashed line is the identity line.

Energy model-like neurons with no additional out-

put exponent lie around (0;0), corresponding to no

attenuation for either stimulus. The positions of the

example neurons shown in Figures 3 and 7 are in-

dicated by red dots. The red line traces an exam-

ple subunit model response, obtained by varying

only the output exponents of each subunit from

3.9 (lower left) to 0.9 (upper right) in the model

shown in Figure 6. The green cross shows the

median SEM. The reason for the relatively large er-

ror in the x direction is that cells with weak modu-

lation to anticorrelated RDS produce very wide

confidence intervals on this log scale.
and troughs and so cannot explain the results shown in Figures

3, 4, and 5. Thus, our data demonstrate that current explanations

of the responses to anticorrelated stereograms are inadequate.

Our model (Figure 6), by virtue of placing both response peak

and trough on the physical disparity line, inevitably produces

an attenuated response to anticorrelated compared to corre-

lated patterns (blue versus red lines in Figure 6B). Thus, this

same model also captures the main features of the same neu-

ron’s response to anticorrelated RDS (Figure 8B).

Therefore, a further test of our model is provided by comparing

the responses to anticorrelated compound gratings with the

responses to anticorrelated RDS. In Figures 8A and 8B, we com-

pare the responses to correlated and anticorrelated compound

gratings by taking cross-sections of the response along the

correlated (physical disparities) and the anticorrelated line (solid

and dashed, respectively, in Figure 2). The first example cell

shows a very good agreement between the compound gratings

and the RDS response in accordance with the energy model. The

second example neuron shows an attenuation for both stimulus

types; however, the attenuation for the anticorrelated RDS

response is significantly stronger than that for the anticorrelated

compound grating response. Figure 8 shows that this second

pattern was typically observed across the population of our cells:

the attenuation is generally larger for RDS than it is for compound

gratings, and the two are correlated (Spearman’s r = 0.38; p <

0.02). This stronger attenuation for RDS results because RDS

contain many more frequency components than the two in our
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compound gratings, allowing the nonlinear interaction between

them to further accentuate the effect. Our model replicates this

behavior. The red line in Figure 8 represents one example family

of our models, obtained by starting with the example model in

Figure 6 and varying the output exponent for each complex

cell subunit (from 0.9 in the upper right to 3.9 in the lower left).

This line illustrates how our model replicates two aspects of

the data: (1) the attenuation for RDS is stronger than for com-

pound gratings, and (2) when keeping everything else constant

and varying only the output nonlinearity, both attenuations are

correlated. Please note, however, that the line we show repre-

sents only one of many families: the location and slope depend

upon other model parameters (including the shape of the nonlin-

earity, the spatial frequency tuning of the RFs, and the baseline

firing rate). Consequently, even our model does not predict

a strong correlation between the attenuation for RDS and for

compound gratings for a randomly sampled population of

neurons. Nonetheless, a number of neurons lie above the line

produced by our model. Whether they can be explained by in-

voking more than two subunits or by including other known prop-

erties like contrast-gain control requires further investigation.

DISCUSSION

Over small regions of the visual field, the difference between the

two eyes’ images is well described by a simple translation. This

means that, when decomposing the two images into their
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different frequency components, the interocular difference in the

spatial phase of each frequency component is proportional to its

frequency. Existing models of disparity selectivity, in particular

the energy model, do not take this restriction into account, de-

voting part of their dynamic range to stimuli that never occur in

the real world. We find that some neurons share this property

of the energy model and are best tuned to nonphysical stimuli.

This striking failure to adapt responses to the properties of

physical binocular images is inevitable in the energy model and

provides a powerful confirmation of it. However, we also find

that more than half of our V1 neurons deviate from the energy

model and do so in a way that exploits the properties of physical

binocular images. We show that they concentrate their dynamic

range in the regions occupied by realistic stimuli, demonstrating

an adaptation of cortical neurons.

Furthermore, neurons that show no such adaptation (or

incomplete adaptation) tend to have their maximal responses

elicited by physical stimuli (Figure 4). This necessarily results in

response minima elicited by nonphysical stimuli. This difference

between the locations of minima and maxima suggests that the

brain attaches special significance to high firing rates.

We propose two alternative models to explain the adaptation

we observe: (1) combining the outputs of two (or more) energy

model-like complex cells, with different phase or position dispar-

ities, in a new stage of binocular processing, or (2) allowing

complex cells to receive input from binocular simple cells with dif-

ferent phase disparities, position disparities, and output nonline-

arities. Model (1) has the advantage that it can explain why almost

half of our neurons are not adapted to natural stimuli—they are

necessary as building blocks. Model (2) does not need an addi-

tional processing stage and might provide a more natural expla-

nation for the fact that our distribution of neurons displays a con-

tinuum of degrees of adaptation. Although model (2) does not

explain why so many cells fail to show adaptation, it may be that

responses to unnatural combinations of interocular phase may

be useful for some other functions. One possibility is that these

cells help solve the correspondence problem (determining how

to match image features between left and right images) precisely

because they identify signals that cannot correspond to a real

world object (Read and Cumming, 2007). Both extensions of the

energy model also reconcile the model with the earlier observa-

tion that responses to disparity in anticorrelated stereograms

are weaker than responses to correlated stereograms (Cumming

and Parker, 1997; Ohzawa et al., 1997; Nieder and Wagner, 2001).

The adaptation we describe cannot be explained by other, al-

ready known effects like dynamic changes in spatial frequency

tuning (Bredfeldt and Ringach, 2002). As we show, the energy

model response to a drifting compound grating is the sum of its

responses to the component gratings individually, each of which

is sinusoidal. As the spatial frequency tuning changes over time,

only the amplitude of those sinusoidal responses is affected,

not their shape. This means that the relative location of peak

and trough in the 2D response to compound gratings is also un-

affected—separated from each other by 180 degrees along each

dimension. Indeed, this is true for any frequency combination,

any spatial frequency tuning, and any output nonlinearity.

Another feature of real neurons that our model explains natu-

rally concerns the binocular responses and ocularity of neurons.
It has long been known that many neurons only respond to stim-

uli in one eye when probed monocularly but are actually dispar-

ity-selective when tested binocularly (LeVay and Voigt, 1988;

Ohzawa and Freeman, 1986a, 1986b; Read and Cumming,

2004a; Smith et al., 1997). This is a direct consequence of the

subtractive implementation of our model. Consider the following

case: two TE cells with identical RFs at identical locations in both

eyes are subtracted from each other. The result is that both sub-

units will cancel each other perfectly (C+ minus C�) in both eyes.

If we then allow C+ to have stronger input from the left eye, while

C� has stronger input from the right eye, the neuron will respond

to monocular stimulation in the left eye, but not in the right eye.

A quantitative and more detailed examination of the relation-

ship between the monocular and binocular responses can be

achieved by an analysis of spike-triggered covariance (de Ruyter

van Steveninck and Bialek, 1988; Rust et al., 2005) which reveals

functional subunits (eigenvectors). This is possible even for

model neurons that would be classified as simple cells. Such

an analysis can also distinguish between the additive and sub-

tractive version of our model. We have confirmed in simulations

that the additive version produces only excitatory subunits, while

the subtractive version also produces inhibitory subunits. This is

in agreement with recent physiological data (Rust et al., 2005)

that found excitatory and inhibitory eigenvectors for most simple

and most complex cells in monkey V1. Since those experiments

were conducted with monocular stimuli, it is not possible to say

whether the inhibitory eigenvectors had the binocular properties

predicted by our model. A spike-triggered analysis of binocular

interactions in complex cells of the cat (Anzai et al., 1999b,

1999c) did not include an analysis of the monocular responses,

so it is not clear that those data are at odds with our model.

Hence, allowing for multiple subunits that differ from each

other in their disparity tuning changes our understanding of the

relative roles played by position and phase disparity in complex

cells. In the context of the original energy model, responses to

a range of disparities can be used to deduce phase and position

disparity (even in hybrid models that contain a mixture of both)

(Anzai et al., 1999c; Cumming and DeAngelis, 2001; Fleet

et al., 1996; Nieder and Wagner, 2000; Ohzawa et al., 1997;

Prince et al., 2002; Qian, 1997; Wagner and Frost, 1993). Our

new data show that for many disparity-selective cells it is not

possible to summarize their responses with a single pair of

phase and position disparities and that attempts to do so can

yield misleading results. For example, odd-symmetric tuning

curves (‘‘near/far’’ types) have generally been thought to indicate

the presence of phase disparity (Fleet et al., 1996; Freeman and

Ohzawa, 1990; Ohzawa et al., 1990). However, we show that odd

symmetry can be achieved by combining subunits with different

position disparities and data like that shown in Figures 3, 4, and 5

suggest that this combination is important, even in the striate

cortex. If our model uses position disparities that differ only in

their horizontal components, it resembles one that was pro-

posed to explain the observation that V1 neurons encode a wider

range of horizontal than vertical disparities (Cumming, 2002;

Read and Cumming, 2004b)—another specialization for the

statistics of the binocular input.

We further note the similarities between our subunit model

for disparity-selective V1 neurons and the original motion energy
Neuron 57, 147–158, January 10, 2008 ª2008 Elsevier Inc. 155
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model for direction selectivity (Adelson and Bergen, 1985). In

both cases, the first stage is provided by the output of V1 simple

cells selective to a particular stimulus feature (there a difference

of position in time, here a difference of position between the

eyes). And in both cases, the next step pools over a population

of those simple cells. However, in the last step of the motion en-

ergy model, the responses of two pools of neurons signaling op-

posite directions are subtracted from each other (‘‘opponency’’).

This opponent stage has not been used in previous versions

of the binocular energy model. Our model incorporating sub-

traction is closely similar to the motion energy model with

opponency, although differs somewhat because our two sub-

units are not in general symmetrical about zero disparity. Inter-

estingly, this agrees with psychophysical measures of disparity

opponency, in which opponent channels were not symmetrical

about the fixation plane (Cormack et al., 1993). Although this

similarity is interesting, it is important to note that the psycho-

physical result could still occur even if V1 contained only energy

model-like neurons: one simply has to propose that opponency

occurs later in the pathway. Similarly, the observation that

stereoscopic adaptation produces a depth aftereffect (Blake-

more and Julesz, 1971) is a necessary feature of our model but

is compatible with phase disparity encoding in V1.

The model we propose may also be relevant to understanding

some of the transformations applied to disparity signals in

extrastriate cortex. It has long been recognized that odd-sym-

metric tuning curves are more frequently encountered in extras-

triate cortex than in striate cortex (Cumming and DeAngelis,

2001; Poggio, 1995; Poggio et al., 1988). Our model provides

an explanation for how this could be achieved in the projection

from striate cortex to extrastriate cortex, and our data demon-

strate a way in which this suggestion can be tested.

The idea that complex and simple cells in striate cortex receive

input from multiple subunits with different spatiotemporal prop-

erties recently received direct support from a spike-triggered

covariance analysis (Rust et al., 2005). Our results suggest that

one reason that multiple subunits are combined is to ensure

that the dynamic range of neuronal signals is matched to the

range of inputs encountered naturally. This requires a combina-

tion of subunits appropriate to match the properties of the binoc-

ular inputs. The same principle might explain the recent finding

that neurons give stronger responses to natural than to artificial

monocular images (Felsen et al., 2005). This could result if mul-

tiple subunits were similarly matched to the statistics of monoc-

ular natural images. Thus, the unexpected specialization we

show here might provide a general mechanism by which neural

signals can be matched to the properties of natural occurring

inputs.

The efficient coding hypothesis is one of the few unifying,

crossmodal theories for the sensory system. Its main prediction,

that neurons in the sensory system should be adapted to natural

inputs, has been tested for a number of specific features inherent

to auditory and monocular visual signals (Smith and Lewicki,

2006; Field, 1987; Schwartz and Simoncelli, 2001; Simoncelli

and Olshausen, 2001). The tests in the visual domain have

been on comparatively subtle statistical aspects of the stimuli,

like short-range spatial correlations and the shape of the power

spectrum. In this study, we tested a specialization to a particu-
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larly strong redundancy caused by the binocular nature of visual

inputs. The results (1) confirm the efficient coding hypothesis by

way of an adaptation for some neurons in our sample and (2) for

the other cells provide a strong confirmation of the energy model

mechanism in generating disparity signals in the brain. We pro-

pose an extension of the energy model as a unified account of

the behavior of both types of neurons.

EXPERIMENTAL PROCEDURES

Stimulation and Recording

We recorded extracellularly from isolated V1 neurons in two awake, fixating

rhesus macaque monkeys. Details of the experimental protocol are described

elsewhere (Read and Cumming, 2003). All protocols were approved by the

Institute Animal Care and Use Committee and complied with Public Health

Service policy on the humane care and use of laboratory animals.

In brief, monkeys perched in a primate chair with their heads immobilized. A

digitally controlled microdrive was used to lower electrodes (glass coated PtIr,

FHC Inc.) through the dura into V1. Spikes were isolated based on the height

and width of the electrical waveforms. All electrical activity crossing a manually

set voltage threshold was saved for offline analysis with a precision of 0.1 ms.

The positions of both eyes were recorded with scleral search coils (implanted

under general anesthesia). Stimuli were presented on two Eizo Flexscan F980

monitors (96 Hz framerate, mean luminance 41.1 cd/m2, contrast 99%, viewing

distance 89 cm, 1 pixel subtended 1.1 min arc at the eye) viewed through

a Wheatstone stereoscope. Gamma correction was adjusted to achieve a linear

luminance response.

Trials lasted approximately 2 s, during which the monkey was required to

maintain fixation within a 0.8� window. If the monkey successfully maintained

fixation throughout the trial, he received a water reward. Each trial consisted of

four 420 ms stimulus presentations, separated by 100 ms blank periods. If the

monkey broke fixation before the end of the trial, the successfully completed

stimulus presentations were saved, but the monkey did not receive a reward.

Responses were measured as the mean spike rate over the entire stimulus

presentation, beginning 50 ms after stimulus onset. Minimum response fields

(MRF) were mapped manually with bars and gratings, and all subsequent stim-

uli were centered over the MRF and were made substantially larger than the

MRF to ensure that the receptive field was covered. Preferred orientation

and spatial frequency were measured with patches of grating presented to

the dominant eye, and these values were then used when measuring disparity

selectivity to a single binocular grating. Disparity selectivity was also examined

with dynamic random dot stimuli. Neurons exhibiting disparity selectivity to

either gratings or RDS were then examined with compound gratings. (We

also examined a few cells that were not disparity selective to single gratings

or RDS. Such cells never exhibited selectivity for interocular phase difference

in compound gratings, so were excluded.)

Compound gratings were generally constructed from summing two 50%

contrast gratings (frequencies in the ratio 1:2) that spanned the preferred

spatial frequency. In a few cases, it was necessary to alter the frequencies be-

cause the preferred spatial frequency defined with monocular gratings did not

produce the strongest disparity selectivity. The stimuli were typically square

patches 4� 3 4� across, and the spatial frequencies used ranged from 0.1 to

6 cpd (depending on cell preference). The distribution of preferred orientations

was approximately uniform. Eccentricities were in the range 2.5� to 8.5�. Eight

values of interocular phase difference were applied to each component (=64

combinations), but the absolute phase (mean of the two eyes) for each compo-

nent was set randomly at the start of each stimulus. Thus, the absolute phase

and the relative phase between components in either eye were unaffected by

changes in the interocular phase difference. The temporal frequency for each

component was inversely proportional to its spatial frequency so that each eye

saw a fixed pattern drifting through an aperture. Responses to the same inter-

ocular phase differences were also measured for the individual component

gratings. All 80 stimulus conditions were interleaved in a pseudorandom

sequence. A minimum of five stimulus repetitions was required, and the

mean value was 13.6 repetitions per stimulus.
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Analysis

We examined responses in 64 neurons that showed significant selectivity to

either RDS or single binocular gratings (p < 0.05 on one-way ANOVA). Nine-

teen of these were excluded from further study because they did not show

significant disparity selectivity to one of the two component gratings when

tested alone (p < 0.05 by one-way ANOVA). All 45 of the remaining neurons

showed significant selectivity for interocular phase in the compound grating.

In order to determine the location of maxima and minima, the responses

were smoothed with a two-dimensional Gaussian filter (s = 36 degrees), and

the extrema of the smoothed response were used. The locations of these

extrema were then used to compute the two indices (described in the Results)

quantifying deviations from the energy model.

Data on responses to RDS were available for 43 of the 45 neurons. Five of

these did not show significant responses to RDS, so we were able to compare

the effects of anticorrelation (in RDS and compound gratings) in 38 neurons. To

quantify the response attenuation caused by anticorrelation in compound

gratings, we simply compared peak-to-peak response magnitudes for the

appropriate slices through smoothed response surfaces like those in Figure 3.

To quantify this attenuation in anticorrelated RDS, we simultaneously fit two

Gabor functions, allowing only the amplitude and phase to differ between

the two stimuli (Cumming and Parker, 1997):

fcorr; antiðxÞ= b + acorr; anti exp

 
� ðx � x0Þ2

2s2

!
cosð2pfxðx � xdÞ � fcorr: antiÞ

where b is the response to uncorrelated stimuli, acorr and aanti are the ampli-

tudes, x0 is the location of the centroid (equal to preferred disparity in the

case of tuned even-symmetric cells), fx is the preferred spatial frequency,

and fcorr and fanti are the phase disparities for the correlated and anticorre-

lated responses. The ratio aanti=acorr then defines the attenuation.

Energy-Model Predictions

In the classical energy model for disparity-selective complex cells (Ohzawa

et al., 1990, 1997) the output of two pairs of binocular simple cells with different

RFs in both eyes are combined. The RFs in each pair are the inverse of

each other, and the RFs of the two pairs are phase-shifted by 90 degrees.

The preferred position and phase disparity of the cells is then given by the

position and phase difference between the RFs in left and right eye which

are assumed to be identical in all four binocular simple cells. Following the

notation of Read et al. (2002), we can write the output of a monocular receptive

field as

n =

ZZ
dx dy Iðx; yÞ rðx; yÞ

where I (x,y) is the luminance of the image in that eye and rðx; yÞ is the receptive

field. For a grating of frequency f and phase 4, this becomes

nðf ;4Þ= ~rOðfÞsin4 + ~rEðfÞcos4 (1)

where ~rE;Ois the even/odd part of the Fourier transform of the receptive field.

For clarity in the following derivation and without restricting generality, we as-

sume position and phase disparity to be zero, one binocular pair to have RFs

which are purely even (E), and one pair whose RFs are purely odd (O). Using the

labels L and R to distinguish between left and right eye, the complex cell

response to a compound grating becomes

C =
�
nE

L + nE
R

�2
+
�
nO

L + nO
R

�2
(2)

with

nO
L = Asin41 + Bsin42 nO

R = Asin
�
41 + D41

�
+ Bsin

�
42 + D42

�

nE
L = Acos41 + Bcos42 nE

R = Acos
�
41 + D41

�
+ Bcos

�
42 + D42

� (3)

where indices 1 and 2 refer to the component gratings of frequencies f1 and f2
and D41;2 to the interocular phase difference for component grating 1 and 2,
respectively. A = ~rðf1Þ and B = ~rðf2Þ are given by the Fourier transform of the

two RFs evaluated at frequencies f1 and f2 (Equation 1). Substituting Equation

3 into Equation 2 yields

C = 2A2ð1 + cosD41Þ+ 2B2ð1 + cosD42Þ+ 2AB½cosð41 � 42Þ
+ cosð41 � 42 + D41Þ+ cosð41 � 42 � D42Þ+ cosð41 � 42 + D41 � D42Þ�

The first two terms in this sum are the responses of the complex cell to each

of the two component gratings alone. The third term depends both on the in-

terocular phase differences D41;2 and the difference between the two absolute

phases 41 � 42.

For a compound grating, 41 � 42 varies as a function of physical displace-

ment. Therefore, the energy model response to compound gratings varies

as a function of position, even though the response is position-invariant

when either grating is presented alone. However, since 41 � 42 takes on all

possible values between 0 and 360 degrees for each pair ðD41;D42Þ, the third

term averages to zero for drifting compound gratings. Hence, the average

response of the energy model is linear in drifting gratings of differing spatial

frequencies:

hCðD41;D42Þit = 2A2ð1 + cosD41Þ+ 2B2ð1 + cosD42Þ= CðD41Þ+ CðD42Þ

where CðDfÞ= 2~rðfÞ2,ð1 + cosDfÞ is the energy model response to an individ-

ual grating with identical receptive fields in left and right eye. Because this

result depends on averaging over absolute phases, it can be seen that the

same holds for simple cells.

Relaxing the assumption of identical RFs in left and right eyes and introduc-

ing a position and a phase disparity DxRF and DfRF between the RFs in the left

and right eye has the effect of simply translating the response pattern (for an

example see Figure 2):

hCðD41;D42Þit = 2A2ð1 + cosðD41 � 4RFðf1ÞÞÞ+ 2B2ð1 + cosðD42 � 4RFðf2ÞÞÞ

where the preferred interocular phase difference is fRFðfÞ= DxRF,f + DfRF.

Computational Details for Figure 5

We obtain an estimate of the frequency distribution of our population by per-

forming a 1000 times resampling with replacement on the original spike rates.

The resulting distribution functions fiðSÞ obtained for every neuron i are

summed to form the distribution function FðSÞ for our entire population (solid

blue curve in Figure 5). In order to estimate the proportion of adapted neurons,

we assume that F(S > 80.5 deg) is entirely due to energy-model-like neurons

plus sampling noise. This can only overestimate the true number of energy-

model-like neurons. Since random noise gives rise to a symmetric distribution

around 80.5 deg, the distribution of energy-model-like neurons will be sym-

metric with respect to 80.5 deg (dashed blue line in Figure 5). The difference

between this and the total distribution represents the adapted subpopulation.

Supplemental Data

The Supplemental Data for this article can be found online at http://www.

neuron.org/cgi/content/full/57/1/147/DC1/.
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