
Systems/Circuits

Decision-Related Activity in Macaque V2 for Fine Disparity
Discrimination Is Not Compatible with Optimal Linear
Readout
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Fine judgments of stereoscopic depth rely mainly on relative judgments of depth (relative binocular disparity) between objects, rather
than judgments of the distance to where the eyes are fixating (absolute disparity). In macaques, visual area V2 is the earliest site in the
visual processing hierarchy for which neurons selective for relative disparity have been observed (Thomas et al., 2002). Here, we found
that, in macaques trained to perform a fine disparity discrimination task, disparity-selective neurons in V2 were highly selective for the
task, and their activity correlated with the animals’ perceptual decisions (unexplained by the stimulus). This may partially explain similar
correlations reported in downstream areas. Although compatible with a perceptual role of these neurons for the task, the interpretation
of such decision-related activity is complicated by the effects of interneuronal “noise” correlations between sensory neurons. Recent
work has developed simple predictions to differentiate decoding schemes (Pitkow et al., 2015) without needing measures of noise
correlations, and found that data from early sensory areas were compatible with optimal linear readout of populations with information-
limiting correlations. In contrast, our data here deviated significantly from these predictions. We additionally tested this prediction for
previously reported results of decision-related activity in V2 for a related task, coarse disparity discrimination (Nienborg and Cumming,
2006), thought to rely on absolute disparity. Although these data followed the predicted pattern, they violated the prediction quantita-
tively. This suggests that optimal linear decoding of sensory signals is not generally a good predictor of behavior in simple perceptual
tasks.

Key words: choice probability; discrimination; disparity; nonhuman primate; readout; V2

Introduction
In humans (Westheimer, 1979; McKee and Levi, 1987) and mon-
keys (Prince et al., 2000), judgments of small differences in ste-
reoscopic depth rely on relative binocular disparity (i.e., the

comparison of differences in nearby disparities in the stimulus).
The first stage in the primate cortex that contains a subgroup of
neurons selective for relative disparity is visual area V2 (Thomas
et al., 2002; Neri et al., 2004). Although we have previously shown
that the activity of disparity-selective neurons in V2 is correlated
with a macaque monkey’s perceptual decision in a “coarse” dis-
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Significance Statement

Activity in sensory neurons that correlates with an animal’s decision is widely believed to provide insights into how the brain uses
information from sensory neurons. Recent theoretical work developed simple predictions to differentiate decoding schemes, and
found support for optimal linear readout of early sensory populations with information-limiting correlations. Here, we observed
decision-related activity for neurons in visual area V2 of macaques performing fine disparity discrimination, as yet the earliest site
for this task. These findings, and previously reported results from V2 in a different task, deviated from the predictions for optimal
linear readout of a population with information-limiting correlations. Our results suggest that optimal linear decoding of early
sensory information is not a general decoding strategy used by the brain.
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parity discrimination task (Fig. 1B) (Nienborg and Cumming,
2006, 2007, 2009), no one has examined this correlation for
“fine” tasks that depend on relative disparity (Fig. 1A). In other
extrastriate areas, such decision-related activity has been re-
ported for neurons in the inferior-temporal cortex, area IT (Uka
et al., 2005) and V4 (Shiozaki et al., 2012) that also has neurons
selective for relative disparity (Umeda et al., 2007). Conversely,
this correlation is absent in area MT (DeAngelis, 2009), where
MT neurons are not selective for relative disparity when tested
with the same stimulus (Uka and DeAngelis, 2006). Other stim-
ulus configurations do reveal selectivity for relative disparity in
MT (Krug and Parker, 2011). Here we examine the possibility
that some of this decision-related activity in downstream areas
may be inherited from V2 neurons. Given the heterogeneous
selectivity for relative disparity in V2 it is possible that V4 and IT
inherit decision-related activity from a subset of V2 neurons that
are selective for relative disparity, whereas MT inherits decision-
related activity from the V2 neurons that are not selective for
relative disparity. To address this question, we recorded the ac-
tivity of disparity-selective neurons in V2 of 2 macaque monkeys
while they performed a fine disparity discrimination task, and
examined whether this was related to their selectivity for relative
disparity. We also compare these results with the decision-related
activity we previously reported for coarse disparity discrimina-
tion in V2 in the same animals (Nienborg and Cumming, 2006,
2007, 2009).

Comparing decision-related activity at different processing
levels and for different tasks potentially offers additional insights
into the origins of decision-related activity in sensory neurons,
and into how the brain is reading out the sensory information.
For many discrimination tasks, decision-related activity depends
on the tuning preferences of the neuron and increases with a
neuron’s sensitivity for the task (Celebrini and Newsome, 1994;
Britten et al., 1996; Romo et al., 2002; Uka and DeAngelis, 2004;
Purushothaman and Bradley, 2005; Gu et al., 2008; Liu et al.,
2013a, b; Nienborg and Cumming, 2014). This suggests that the
correlation reflects a specific link between task-relevant sensory
neurons and the animal’s perceptual choice. Nonetheless, the
interpretation of such decision-related activity has proven diffi-

cult (Shadlen et al., 1996; Krug, 2004; Nienborg and Cumming,
2010; Nienborg et al., 2012; Haefner et al., 2013; Crapse and
Basso, 2015; Nienborg and Roelfsema, 2015; Smolyanskaya et al.,
2015; Cumming and Nienborg, 2016). In particular, it is compli-
cated (Shadlen et al., 1996; Cohen and Newsome, 2009; Haefner
et al., 2013) by the presence of interneuronal correlations
(“noise-correlations”; for review, see Cohen and Kohn, 2011),
typically observed between pairs of sensory neurons. A recent
study (Pitkow et al., 2015), building on analytical work (Haefner
et al., 2013; Moreno-Bote et al., 2014), identified a distinctive
property of networks in which choice is determined by an optimal
linear readout of sensory neurons with information-limiting corre-
lations, regardless of other details of those correlations. This prop-
erty, a specific relationship between decision-related activity,
neuronal performance, and behavior, was compatible with data re-
ported in dorsal medial superior temporal area for a heading dis-
crimination task. If this relationship holds in V2 for either disparity
task, it would suggest that decision-related activity downstream is
simply inherited from V2. (If the downstream area receives addi-
tional information and is also optimally decoded, the behavior
would have to be better than an optimal decoder of V2 alone.) If the
predicted relationship does not hold in V2, it raises questions about
the origin of the decision-related activity downstream. For example,
larger than predicted choice probabilities (CPs) imply a choice-
related signal that is not derived from the limiting noise (Pitkow et
al., 2015). If such a signal is present in V2, it is presumably passed
downstream.

Materials and Methods
Animals. All procedures reported in this study were performed in com-
pliance with the Public Health Service policy on humane care and use of
laboratory animals and all protocols were approved by the National Eye
Institute Animal Care and Use Committee. We studied the neural activ-
ity of disparity-selective neurons from visual area V2 in two male ma-
caque monkeys (Macaca mulatta). Before recording scleral search coils
(Judge et al., 1980), a headpost and a recording chamber over the oper-
culum of V1 were implanted under general anesthesia (for a more de-
tailed description, see Cumming and Parker, 1999).

Recording. Recording of neural activity was done while the animals
were performing a disparity discrimination task. We also recorded eye
positions for each eye (CNC Engineering). The procedure used for re-
cording was described previously (Cumming and Parker, 1999; Nien-
borg et al., 2004, 2005). Only activity from isolated units is reported in
this study. Spike sorting was performed offline using custom-written
software.

Before starting the behavioral experiment, we determined the size and
position of the receptive field (Read and Cumming, 2003) and the dis-
parity tuning of the recorded unit while the animal was required to
maintain fixation within 1 degree of a 0.1 degree fixation point. Although
we do not have histological data, we find a substantial correlation be-
tween disparity selectivity and direction selectivity in V2 (H.N. and
B.G.C., unpublished observations). Although it therefore seems likely
that the majority of our disparity-selective neurons come from thick
stripes (e.g., Chen et al., 2008; Lu et al., 2010), it is possible that a sub-
stantial number of units were also recorded outside the thick stripes.

Task. Once we characterized the disparity tuning properties of a unit,
we recorded its extracellular activity during a fine disparity discrimina-
tion task. The animals’ task was to discriminate whether the central disc
was protruding (“near”) or receding (“far”) relative to a surrounding
annulus (typically 1 degree wide). In this task, the center disparity was
varied in small increments around the surround disparity. In each ses-
sion, the disparity of the surrounding disk was kept constant while the
disparity of the center disk was varied randomly between trials. We re-
port new data for the fine disparity discrimination task and compare
these with previously reported data obtained for the coarse disparity
discrimination task (Nienborg and Cumming, 2006, 2007, 2009).

A

B

Figure 1. The fine and coarse disparity discrimination tasks. A, Stimulus illustration of the
fine disparity discrimination task with an example far stimulus. The surrounding annulus is at
the disparity of the fixation plane (0°). The disparity difference between the central region and
the surround is smaller in the middle than the left panel, which increases the discrimination
difficulty. The stimulus on the right corresponds to the 0% signal condition for which the dis-
parity of the center is the same as for the surrounding annulus. B, Schematic of the coarse
disparity discrimination task. The signal disparity is far and well above threshold. For the 50%
signal stimulus, 50% of the dots in the RDS are replaced by noise dots. For the 0% signal
stimulus, the central patch of the stimulus consists only of noise dots.
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The monkeys initiated trials by fixating a fixation point at the center of
the display. The stimulus was then presented for 2 s while the monkeys
were required to maintain fixation within 0.5 degrees of the fixation
point. After stimulus presentation, two choice targets appeared and the
animals responded by making a saccade either upward (indicating a “far”
choice) or downward (“near” choice). If correct, the monkeys received a
liquid reward.

Whenever possible, data for both the fine and the coarse disparity
discrimination task were collected for the same unit in consecutive blocks
during the same recording session.

Stimuli. Stimuli were generated on a Silicon Graphics workstation
using custom-written software. Stimuli were presented via a Wheatstone
stereoscope configuration. This consisted of two Flexscan F980 monitors
(EIZO) and a set of mirrors oriented at 45°, positioned at 1.5 cm from the
eyes. The viewing distance was 89 cm. For each monitor, the mean lumi-
nance on screen was 42 cd/m 2, the maximum contrast was 99%, and the
frame rate was 96 Hz.

The stimuli were dynamic random dot stereograms (RDS, 50% black,
50% white, typical dot density 40% and 0.09 � 0.09 degrees dot size).
The RDS consisted of a center disk and a surrounding annulus (“back-
ground”). Its size (mean size of the center: 3.8 degrees; mean width of the
annulus: 1.3 degrees) and position were fit to the receptive field (mean
eccentricity: 4.86 degrees) of the recorded unit.

For the fine disparity discrimination task, we used dynamic RDS at
100% binocular correlation. For each recorded unit, we tailored the sur-
round disparity to the tuning preference of the neuron such that the
neuron’s disparity tuning had a steep slope in the vicinity of the surround
disparity. The surround disparity remained fixed within each session.
The median value of the surround disparity was 0 degrees (range: �0.5 to
0.3). For a surround disparity of 0, a typical range of disparities (in
degrees) for the central disc was as follows: �0.05, �0.025, �0.0125, 0,
0.0125, 0.025, 0.05. On trials for which the center disparity was identical
to the surround disparity (0% signal trials), the monkeys were rewarded
on 50% of the trials chosen randomly.

Whenever possible, we also measured the responses of the same unit
while the monkeys performed a coarse disparity discrimination task. The
stimuli for the coarse disparity discrimination task are described in detail
in Nienborg and Cumming (2006, 2009). Briefly, for each coarse dispar-
ity discrimination task, we chose one near and one far signal disparity
both well above disparity detection threshold, which were chosen to be
close to the preferred and null disparity of the recorded neuron. The
surrounding annulus was at 0 degrees disparity, at 100% binocular cor-
relation. We used noise to manipulate task difficulty in the coarse dispar-
ity discrimination task and varied the proportion of signal and noise
between trials. For the comparison of CP in the coarse versus fine dispar-
ity discrimination task (see Fig. 7), we included data for which two ver-
sions of noise were used. In the first version, noise dots correspond to
dots that are uncorrelated between the eyes (Nienborg and Cumming,
2006, 2007). On trials with 0% signal dots, all dots were uncorrelated and
the monkeys were rewarded randomly on 50% of the trials. In the second
version, all the dots of the center had the same disparity on each video
frame (frame rate 196 Hz) while this disparity value changed randomly
from frame to frame. For the condition with no added signal (0% signal
trials), the disparity on each frame was drawn at random from a uniform
distribution of discrete, equally spaced disparities, symmetrical around 0
degree disparity, and encompassing the preferred and the null disparity
of each neuron. For these trials, the monkeys were rewarded randomly on
50% of the trials. Disparity signal was introduced by increasing the prob-
ability of the signal disparity on each frame (for a detailed description, see
Nienborg and Cumming, 2009).

Measurements of relative disparity tuning. To quantify tuning for rela-
tive or absolute disparity, we measured the responses to RDS stimuli for
which we systematically varied the disparity of the center and the sur-
rounding annulus (typically 7 center disparities, each presented at 7 dif-
ferent surround disparities, typically spanning 1 degree), presented in
random order. Stimulus presentation lasted 450 ms. The resulting 2D
response map (center disparity � surround disparity) was fitted with a
2D Gabor function (see Fig. 5, insets), and selectivity for relative or
absolute disparity summarized by the orientation of the 2D Gabor. Ver-

tical orientation (90 degrees) indicates that the selectivity to the disparity
in the center is independent of the disparity in the surround (absolute
disparity tuning). An oblique orientation indicates that the neuron
changes its center disparity selectivity depending on the disparity present
in its surround. Only cells for which the 2D Gabor fits explained �65% of
the variance were included for this analysis. We determined whether the
orientation of the 2D Gabor was significantly lower than 90 degrees by
resampling (1000 resamples).

Computation of CP. CP quantifies the trial-by-trial correlation be-
tween an animal’s choice and the spike count of a unit (Britten et al.,
1996). We computed the CP using only 0% signal trials. The spike count
over the whole 2 s stimulus presentation was used and spike counts were
separated by choice. CP was computed as the area under the receiver
operating characteristic (ROC) curve. A permutation test (Britten et al.,
1996; Uka and DeAngelis, 2003) was used to assess whether a unit had
significant CP. For the comparison with CP in the coarse discrimination
task (see Fig. 7), CP was computed in response to 0% signal stimuli. For
data obtained for the version of the coarse disparity discrimination task
used by Nienborg and Cumming (2009), CP was corrected for stimulus-
induced variability.

Neurometric and psychophysical thresholds. Neuronal thresholds were
calculated based on ROC analysis (applied to mean firing rates during the
entire 2 s trial) using a “neuron-antineuron” formulation as described
previously (Britten et al., 1996; Shiozaki et al., 2012). (This formulation
assumes a theoretical “antineuron” with opposite disparity tuning, but
otherwise identical responses to that of the actual neuron recorded.) The
neurometric curves were then plotted as a function of the signed disparity
signal (center disparity � surround disparity) relative to the preference
of the neuron. For the psychophysical functions, the percentage of
choices to a neuron’s preferred disparity were plotted as a function of the
signed disparity signal. Both the psychophysical and neurometric func-
tion were then fitted with a cumulative Gaussian via maximum likeli-
hood. The SDs of the cumulative Gaussian functions were defined as the
neurometric and psychometric threshold, respectively, and correspond
to the 84% correct level. Only fits that explained �65% of the variance
were included. For the comparison with values for the coarse disparity
discrimination task (see Fig. 8B), we used an extended dataset of previ-
ously published data (Nienborg and Cumming, 2006, 2007).

Inclusion criteria. We recorded from 111 single units (52 and 59 from
Monkeys 1 and 2, respectively) and only included cells that were signifi-
cantly tuned for disparity ( p � 0.01 on a one-way ANOVA) and whose
preferred disparity yielded a response of at least 5spk/s.

We further applied a number of behavioral criteria to our dataset.
First, we excluded sessions for which the animals had a strong behavioral
bias (choosing one target �80% on 0% signal trials). Additionally, the
animals had to perform the task at least 80% correctly, for at least one of
the two easiest “near” and “far” disparity stimuli, respectively. Finally,
only sessions for which the monkey made at least three near and far
choices each for the 0% signal trials were included. These criteria were
met by n � 84 neurons (Monkey 1: n � 38; Monkey 2: n � 46). In
Monkey 2, the mean vertical eye position differed systematically in a
subset of sessions such that there was a significant negative correlation
between the mean choice-dependent difference in eye position and CP
(r � �0.29, p � 0.048). We therefore included an additional criterion to
exclude sessions for which there were systematic differences in the mean
vertical eye position associated with the two choices that exceeded 0.12 de-
grees. This criterion abolished the negative correlation between the mean
choice-dependent difference in vertical eye position and CP in Monkey 2
(r � 0.009, p � 0.96). The dataset for which we measured CPs therefore
consists of 63 single units (Monkey 1: n � 37; Monkey 2: n � 26).

Choice correlations. To test predictions for an optimal linear readout of
V2 in the presence of correlated noise (Pitkow et al., 2015), we converted
our measured CPs into choice correlations (Pitkow et al., 2015) accord-
ing to the following equation:

choice correlationmeasured �
�

�2
�CP �

1

2�
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This value was then compared with the choice-correlation value pre-
dicted for an optimal linear decoder in the presence of information-
limiting correlated noise (Pitkow et al., 2015) as follows:

choice correlationpredicted opt �
psychophysical threshold

neurometric threshold

This prediction (Pitkow et al., 2015) was developed for neurometric
thresholds computed by comparing the responses of one neuron to a
fixed reference. We compute neurometric thresholds with the traditional
“neuron-antineuron” method. The signal amplitude is therefore twice as
large (neuron-antineutron compared with neuron-constant), but also
has twice the variance. This produces neurometric thresholds that are
smaller by �2 (for a fuller discussion how the “neuron-antineuron”
formulation influences neurometric thresholds, see Prince et al., 2000).
We therefore multiplied our neurometric thresholds by �2 before com-
paring them with choice correlations. To test this prediction for the
coarse disparity discrimination task (see Fig. 8D), we used an extended
dataset of previously published data (Nienborg and Cumming, 2006,
2007).

Results
We recorded the extracellular activity from disparity-selective
neurons in V2 while 2 macaque monkeys performed a fine dis-
parity discrimination task. The stimuli consisted of circular dy-
namic RDSs surrounded by a circular annulus and presented at
100% interocular correlation. For each session, the surround dis-
parity was tailored to the disparity preferences of the neuron such
that small changes around this disparity value corresponded to
the steep slope of the neuron’s disparity tuning curve (compare
Fig. 2). The animals’ task was to judge whether the central region
protruded or receded relative to the surrounding annulus. Task
difficulty varied depending on the disparity difference between
the center and the surrounding annulus (Fig. 1A).

Behavioral and V2 neuronal performance for the fine
disparity discrimination task
The animals learned to perform the fine disparity discrimination
task with high accuracy: the mean psychophysical threshold (de-
fined as 84% correct; see Material and Methods) was 0.032 �
0.042° (0.044 � 0.045° and 0.022 � 0.036° for Monkey 1 and
Monkey 2, respectively). These values were comparable with
those previously reported in macaques for the same task (Prince
et al., 2000; Shiozaki et al., 2012). The behavioral data for one
example session in each monkey is shown in Figure 2 (top row,
black symbols; note that the disparity value of the surround is
marked by the dashed vertical line). The activity of the simulta-
neously recorded single units changed substantially around the
range of disparity values used during the behavioral task. For
both units, the firing rate varied as monotonic function of dis-
parity over the range used. We then used the mean responses on
each trial to compute neurometric functions (see Materials and
Methods), which we superimpose on the psychophysical func-
tions (top panel, gray squares), and use to compute neurometric
thresholds. The neurometric thresholds for Monkey 2 (Fig. 2, top
right) slightly exceeded the simultaneously recorded psycho-
physical thresholds. This was typical in the population as can be
seen in Figure 3. The mean � SD neurometric threshold across all
units was (0.051 � 0.070°; it was 0.061 � 0.085° and 0.043 �
0.055° for Monkey 1 and Monkey 2, respectively). The mean ratio
comparing the neurometric and psychophysical thresholds was
(1.55 � 0.83; for Monkey 1 and 2, it was 1.22 � 0.86 and 2.20 �
0.66, respectively). Across all sessions, we found a significant cor-
relation between the psychophysical and neurometric thresholds
(Spearman’s rank r � 0.51, p � 10�3). Several experimental

covariates drove this correlation, of which the most important
was the magnitude of the reference disparity (the background
disparity), similar to Prince et al. (2000). The correlation between
�background disparity� and psychophysical threshold (Spear-
man’s rank r � 0.58, p � 10�6, Monkey 1, r � 0.77, p � 10�6,
Monkey 2, r � 0.37, p � 0.024, and that between �background
disparity� and neurometric threshold (Spearman’s rank r � 0.54,
p � 10�5, Monkey 1, r � 0.65, p � 10�4, Monkey 2, r � 0.39, p �
0.016) were of comparable magnitude.

Together, these analyses established that both monkeys per-
formed the fine disparity discrimination with high precision and
the recorded population of neurons in V2 provided signals suit-
able for this task.

Decision-related activity in disparity-selective V2 neurons
during the fine disparity discrimination task
We therefore asked next whether the activity of the recorded
neurons correlated with the monkeys’ behavioral judgment on a
trial-by-trial basis. For this, we divided the responses of each unit
to the 0% signal stimulus (i.e., the disparity value of the center
that was identical to that of the surround) into two groups: those
for which the monkey chose the neuron’s preferred and null dis-

Figure 2. Example neuronal and behavioral responses from the 2 animals. Left column,
Monkey 1. Right column, Monkey 2. Top, Black circles represent psychophysical performance as
percentage far choices as a function of the disparity (°) of the stimulus center. Vertical dotted
line indicates the disparity at which the surround was shown. Gray squares represent the neu-
rometric curves of the simultaneously recorded neurons. Continuous lines indicate the cumula-
tive Gaussian fits. Middle, The mean firing rate of the recorded neurons is plotted as a function
of the disparity of the center. Both neurons change their firing rate monotonically around the
disparity of the surround (vertical dashed line). Bottom, Distribution of firing rates (spikes/s) for
0% signal trials are shown separated by the animal’s choice. Filled and open symbols represent
choice toward a neuron’s preferred and null disparity, respectively. Triangles represent the
mean firing rates for each choice. The CPs for each neuron were 0.63 (left) and 0.79 (right).
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parity. The distributions for two example units are shown in
Figure 2 (bottom row). For both units, the distribution for
choices toward the neuron’s preferred disparity is slightly shifted
toward higher values (Fig. 2, bottom row, filled bars). We then
computed ROC curves based on these distributions and the area
under the ROC curve was defined as CP (Britten et al., 1996). It
corresponds to the probability with which an ideal observer
would correctly predict the monkeys’ choice at the end of the trial
given two stimulus presentations in an interval forced choice, and
the spike counts from each interval from the recorded neuron on
each trial. For the two example neurons, CP was 0.62 and 0.79,
respectively. For each of these neurons, there was a significant
trial-by-trial correlation between the activity of the individual
unit and the monkey’s behavioral choice (p � 0.05). On average,
we also observed significant CPs across the population of re-
corded units. The distribution of CPs for all 63 single units is
shown in Figure 3 (bottom). We found a mean CP significantly
�0.5 (mean � 0.58, p � 10�6, t test). The mean CP was also
significant in each monkey individually (Monkey 1: mean � 0.58
p � 0.001, n � 37; Monkey 2, mean � 0.58, p � 0.0022, n � 26).
For a substantial fraction of units (18 of 63, 29%), CP was indi-
vidually significant. All of these units had CPs �0.5. These results
indicate that there are systematic trial-by-trial correlations be-
tween neural activity of individual neurons and the animals’

choices. The mean CP values are as large as those previously
found for a fine disparity discrimination tasks in downstream
areas V4 (mean CP 0.55) (Shiozaki et al., 2012) and IT (mean CP
0.56) (Uka et al., 2005).

Control analyses to account for potential effects of
eye movements
Although the animals were required to maintain precise fixation
during the stimulus presentation and although we sought to
minimize systematic differences in eye position with choice (see
Materials and Methods), small systematic differences in eye
movements with choice could in principle give rise to significant
trial-by-trial correlations between the activity of single units and
the animals’ choices. We therefore performed a number of con-
trol analyses to verify that such effects could not account for the
CPs we observed.

Mean eye position
Because the animals were required to indicate their choices with a
vertical saccade toward a target above or below the fixation point,
anticipatory eye movements within the fixation window in the
direction of the choice target could potentially result in system-
atic mean differences in eye position with choice. To verify that
our attempt to minimize systematic differences with choice (see
Materials and Methods) was successful, we computed the average
vertical eye position during the stimulus presentation. For each
unit, we then compared the average absolute vertical eye position
differences between near and far choices. The remaining mean
absolute eye position difference was small, 0.041 � 0.033° (Fig.
4A). Furthermore, there was no significant correlation between
CP and absolute vertical eye position differences (n � 63 units,
r � 0.091, p � 0.48). These results were similar in each monkey
individually (Monkey 1: n � 37 units, mean � 0.034 � 0.029, r �
0.17, p � 0.32; Monkey 2: n � 26 units, mean � 0.052 � 0.034,
r � 0.0092, p � 0.96). Together, these results suggest that system-
atic differences in vertical eye position as function of choice can-
not explain the CPs we observed. Similarly, choice-related
differences in horizontal eye position were not correlated with CP

Figure 3. Population neuronal and behavioral data for the fine disparity discrimination
task. Top, Neurometric thresholds for individual units are compared with the simultane-
ously measured psychometric thresholds. Circles represent Monkey 1. Squares represent
Monkey 2. n � 51. The N/P ratios are displayed as a frequency histogram along the
diagonal axis. The mean value is 1.55, indicating that, on average, the neurometric
thresholds are slightly worse than the performance of the animal. Bottom, The distribu-
tion of CPs for all n � 63 units. Triangle represents the mean value (0.58), indicating that
the mean is higher than chance level (0.5, dashed line). Filled bars represent cells (n � 18)
with individually significant CPs.

A B

C D

Figure 4. CPs cannot be explained by systematic differences in eye movements. Circles
represent Monkey 1. Squares represent Monkey 2. Filled symbols represent units that had
individually significant CPs ( p � 0.05). A, The absolute difference in mean vertical eye position
as a function of choice is not significantly correlated with CP (r � 0.091, p � 0.48). B, We
compare the difference in vergence, signed according to the neuron’s preference, against CP
and find no significant correlation (r � �0.038, p � 0.76). C, The absolute difference in the
mean number of microssacades between near and far choices is not significantly correlated with
CP (r�0.017, p�0.90). D, The absolute difference in average microsaccade size between near
and far choices is plotted against CP (r � 0.11, p � 0.11).
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(both animals: mean � 0.034 � 0.028, n � 63 units, r � �0.023,
p � 0.86; Monkey 1: n � 37 units, mean � 0.032 � 0.022, r �
0.084, p � 0.62; Monkey 2: n � 26 units, mean � 0.037 � 0.035,
r � �0.12, p � 0.57), data not shown).

Vergence
Changes in an animal’s vergence will cause a corresponding
change in the absolute disparity of the stimulus. We found that
the mean difference in vergence across all sessions was small
(mean � 0.0063 � 0.034°; Monkey 1: mean � 0.0086 � 0.032°,
SD; Monkey 2: mean � 0.0030 � 0.036°), but it indicated that the
animals converged slightly more on near choices compared with
far choices. Although these choice-dependent differences are
small, they could result in choice-dependent changes in firing
rate. A choice-dependent difference in vergence would yield op-
posite effects on CP for near and far-preferring neurons. For
far-preferring neurons, stronger divergence on far choices than
on near choices would result in a larger far disparity on far choices
and hence in a CP �0.5. In contrast, the same choice-dependent
difference in vergence would cause a CP of �0.5 for a near-
preferring neuron. To take this differential effect of vergence with
respect to a neuron’s tuning preference into account, we exam-
ined whether CP depended on the vergence difference between
the animal’s choices to the preferred and null disparity for each
neuron (Fig. 4B). Specifically, we changed the sign of the vergence
difference (� vergence) according to the preference of the re-
corded neuron: a positive � vergence corresponds to stronger
divergence on near choices for near-preferring neurons, and to a
stronger divergence on far choices, for far-preferring neurons.
Using this signed vergence difference, positive values would be
expected to produce CPs �0.5. We found that far-preferring
neurons showed a positive trend between the mean difference in
vergence and CP (r � 0.41, p � 0.066, n � 21). However, for
near-preferring neurons, the trend was in the opposite direction
(r � �0.16, p � 0.33, n � 42). Indeed, across all neurons, the
correlation between the mean signed vergence difference and CP
was �0.038 (p � 0.76, n � 63; r � �0.052, p � 0.76, n � 37 in
Monkey 1 and r � �0.020, p � 0.92, n � 26 in Monkey 2). Thus,
overall, the weak correlation between CP and choice-related ver-
gence changes is in the wrong direction to account for the ob-
served CP.

Microsaccades
Microsaccades transiently modulate neuronal responses (Gur et
al., 1997; Bair and O’Keefe, 1998; Leopold and Logothetis, 1998;
Martinez-Conde et al., 2000; Hass and Horwitz, 2011; McFarland
et al., 2015). Systematic differences in the frequency, size, or di-
rection of microsaccades with choice might thus result in system-
atic correlations between a neuron’s firing rate and choice. To
verify that such an effect could not explain the CPs we observed,
we correlated each of these metrics with CP. We found no sys-
tematic relationship between the �difference in the number of
microsaccades� as a function of choice and CP across animals or
in either animal alone (Fig. 4C; r � 0.017, p � 0.90, n � 63;
Monkey 1: r � �0.057, p � 0.74, n � 37; Monkey 2: r � 0.14, p �
0.50, n � 26). Similarly, there was no significant correlation be-
tween CPs and the choice-dependent �difference in size of micro-
saccades� (Fig. 4D; r � 0.11, p � 0.37, n � 63; Monkey 1: r �
0.069, p � 0.69, n � 37; Monkey 2: r � 0.17, p � 0.42, n � 26).
Finally, the difference in the direction of saccades between far and
near choices was not significantly correlated with CP (r � �0.11,
p � 0.40, n � 63; Monkey 1: r � �0.13, p � 0.44, n � 37; Monkey
2: r � �0.083, p � 0.69, n � 26; data not shown).

Together, these additional analyses make it very unlikely that
one of these different types of eye movements can explain the
systematic differences in firing rate with choice we observed.

Does decision-related activity depend on the V2 neurons’
selectivity for relative disparity?
Psychophysical studies in humans (Westheimer, 1979; McKee
and Levi, 1987) and macaques (Prince et al., 2000) found that
discrimination thresholds for small changes in disparity increase
	10-fold in the absence of a reference stimulus. This supports the
view that fine disparity discrimination (as used in this study)
relies on relative disparity judgments (i.e., the comparison of the
disparity in nearby stimuli; e.g., the center vs the surrounding
annulus in the stimulus we used). While the tuning of disparity-
selective neurons in V1 exclusively depends on the disparity pre-
sented inside the receptive field (absolute disparity tuning), a
subset of disparity-selective neurons in V2 are selective for rela-
tive disparities. That is, their disparity selectivity changes system-
atically as a function of the disparity of a surrounding reference
stimulus. To quantify the degree to which the disparity-selective
neurons were selective for relative or absolute disparities, we
measured the disparity tuning curve to the center of the stimulus
for a set of different disparity values of the surround (Fig. 5,
insets). The resulting response surfaces were then fit with a 2D
Gabor function. We used the orientation of the Gabor to quantify
the degree to which a neuron was selective for absolute or relative
disparity. If the disparity tuning to the center was independent of
the surround (i.e., the neuron showed absolute disparity tuning),
the 2D Gabor was oriented vertically (90 degrees; Fig. 5, top two
insets, two examples). Conversely, if the orientation of the Gabor
was at 45 degrees, it means that a neuron was selective to a step in
disparity relative to the surround that was, over a range of sur-
round disparities, independent of the disparity of the surround.
Examples for such relative disparity tuning are shown in Figure 5
(right, insets).

We previously proposed that cortical sensory neurons that
show decision-related activity are organized in clusters or col-
umns for the task-relevant feature (Nienborg and Cumming,
2014). We therefore wondered whether there was evidence for
clustering for relative disparity in V2. To address this question,
we compared the orientation of the 2D Gabor fit to the 2D re-
sponse surface for changing center and surround disparities re-
corded for the single unit activity and the simultaneously
recorded multiunit activity excluding the single-unit (Fig. 6).
(The mean firing rate for the multiunit activity for the disparity
tuning curves was 46 sp/s, compared with a mean firing rate of
30 sp/s for the disparity tuning curves of the single unit activity,
suggesting that, on average, the multiunit activity could be the
sum of as few as two neurons.) The correlation was 0.66 (circular
correlation, p � 0.017, n � 35), in support of a clustered organi-
zation for relative disparity tuning, although this correlation only
reached significance in one of the animals (Monkey 1: circular
correlation � 0.20, p � 0.56, n � 21; Monkey 2: 0.80, p � 0.014,
n � 14).

To address the question of whether decision-related activity
depended on a neuron’s tuning to relative disparity, we plotted
the angle of the 2D Gabor against CP. First, although there was a
subset of neurons that showed clear selectivity for relative dispar-
ity, the majority of neurons were tuned to absolute disparities,
consistent with previous findings (Thomas et al., 2002). Second,
given the psychophysical evidence that subjects rely on relative
disparity judgments for this task, one might expect that neurons
selective for relative disparity have higher CPs. If this were the
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case, we should observe a negative correlation between the two
metrics. However, our data do not support this hypothesis. There
was no significant correlation between these two parameters
(Spearman’s rank r � 0.077, p � 0.62, n � 45). This is also the
case when tested in each animal individually (Monkey 1: Spear-

man’s rank r � 0.10, p � 0.63, n � 26;
Monkey 2: Spearman’s rank r � 0.088,
p � 0.72, n � 19). Indeed, for the subset of
neurons for which the orientation of the
2D Gabor was significantly �90 degrees,
in support of significant relative disparity
tuning (n � 31), the CP (mean CP � 0.58)
was not significantly different from neu-
rons in which orientation of the 2D Gabor
was statistically indistinguishable from or
exceeded 90° (n � 14, mean CP � 0.56,
p � 0.934, t test). This indicates that
decision-related activity is independent of
a neuron’s selectivity for relative disparity.

Similarly, the neurometric thresholds
were not significantly different between
groups (p � 0.65, Wilcoxon rank sum
test; the mean � SD neurometric thresh-
old was 0.036 � 0.031 degrees for the
group of neurons whose 2D Gabor orien-
tation was significantly �90 degrees and
0.090 � 0.13 degrees for the remaining
neurons).

Comparing CPs for the fine and coarse
disparity discrimination task
Our animals also had received extensive
training on a coarse disparity discrimina-
tion task (Fig. 1B), and we have previously
reported CPs for disparity-selective neu-
rons in V2 for this coarse discrimination
task. Given the surprising independence
of CP in the fine disparity discrimination
task and a neuron’s selectivity for relative

disparity, we wondered whether there was any relationship be-
tween the CPs across the two tasks (Fig. 1A,B). For example, if
the animals’ perceptual strategy were largely constant across tasks
and dominated by the coarse disparity discrimination task, this
might lead to a correlation of CPs between tasks and obscure a
relationship between a neurons’ tuning for relative disparity and
CP for the fine task. We therefore additionally recorded the neu-
ral activity while the animals performed the coarse disparity dis-
crimination task. For a subset of cells (n � 25; Monkey 1: n � 15;
Monkey 2: n � 10), our neuronal and behavioral inclusion crite-
ria were met for both tasks. For these cells, we compare the CPs
for the fine task (abscissa) with those for the coarse task (ordi-
nate) in Figure 7. There was a weak but not statistically significant
correlation of the CPs for the two tasks (r � 0.38, p � 0.064, n �
25; Monkey 1: r � 0.52, p � 0.046, n � 15; Monkey 2: r � 0.26,
p � 0.47, n � 10). These estimates of CP were performed on a
median number of trials for the 0% signal condition of n � 46 for
the fine and n � 83 for the coarse disparity discrimination task,
respectively. To improve our statistical power in estimating CP,
we also computed the correlation between the “grand” CPs
(compare Britten et al., 1996) for both tasks. These also revealed
a weak correlation (r � 0.30, p � 0.15, n � 25) that did not reach
statistical significance. This suggests that the absence of a rela-
tionship between the neuronal tuning for relative disparity and
CP for the fine disparity discrimination task does not result from
the animals’ perceptual strategy being dominated by the coarse
disparity discrimination task. As the sample size is small, we can-
not exclude a modest correlation between CPs for the two tasks,

Figure 5. CP does not depend on a neuron’s degree of selectivity for relative disparity. For each neuron, disparity selectivity to
the stimulus center (abscissa of insets) was measured for several disparities of the surrounding annulus (Insets, ordinate). The
resulting 2D map was fitted with a 2D Gabor function. The orientation of the 2D Gabor was then used to estimate a neuron’s
selectivity for relative disparity. Top two insets, For neurons selective to absolute disparity, the orientation was close to 90°. Right
two insets, For neurons selective for relative disparity, the orientation was tilted toward 45°. There is no systematic relationship
between the orientation of the 2D Gabor ( y-axis) and CP (Spearman’s rank r�0.076, p�0.62, n�45). Circles represent Monkey
1. Squares represent Monkey 2. For filled data points, the CP was significant ( p � 0.05).
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but the weak correlation does not seem compatible with the same
readout being used for both tasks.

Testing theoretical predictions of optimal linear readout in
the presence of information-limiting correlations for both
tasks
Although previous work (Shadlen et al., 1996; Cohen and New-
some, 2009; Haefner et al., 2013) has highlighted the fact that
interneuronal correlations (“noise correlations”; for review, see
Cohen and Kohn, 2011) complicate the interpretation of CPs,
recent theoretical studies (Haefner et al., 2013; Moreno-Bote et
al., 2014; Pitkow et al., 2015) have refined our understanding of
the relationship. In particular, Moreno-Bote et al. (2014) showed
that noise correlations only of a particular type limit the informa-
tion that can be read out from a population of sensory neurons.
These correspond to interneuronal correlations proportional to
the product of the derivative of the neurons’ tuning curves and
are termed “information-limiting” correlations (Moreno-Bote et
al., 2014). Using these insights, Pitkow et al. (2015) showed that,
if there are information-limiting correlations in a population of
neurons, and decisions are based on an optimal linear decoder of
that population, then a unique relationship holds between CP
and the ratio (psychometric threshold)/(neurometric threshold).
They found that, for a heading discrimination task, the neuronal
data from early sensory areas were consistent with this relation-
ship (Pitkow et al., 2015). If optimal linear readout of activity in
early sensory areas provides a good account of psychophysical
performance, the data we present here should follow this rela-
tionship. The results reported here, combined with our previous
results in V2 for the coarse disparity discrimination task per-
formed by the same animals (Nienborg and Cumming, 2006,
2007), allow us to test this prediction in an early visual area across
two different but closely related tasks.

First, we explored whether the predictions by Pitkow et al.
(2015) for an optimal linear decoder and information-limiting
correlations held for the coarse disparity discrimination task. Al-
though we found a significant positive correlation between our
measured choice correlations and those predicted supporting a

qualitative agreement with the predictions (see Materials and
Methods; Spearman’s rank r � 0.37, p � 10�4, n � 104; Monkey
1: Spearman’s rank r � 0.38, p � 0.0021, n � 62; Monkey 2:
Spearman’s rank r � 0.31, p � 0.047, n � 42; Fig. 8A), similar to
Pitkow et al. (2015, their Fig. 6C, top), the observed values are
systematically lower than predicted. Sessions for which the psy-
chophysical threshold significantly exceeds the neurometric
threshold imply suboptimal readout by themselves and may re-
flect poor behavioral performance due to reasons, such as lack of
motivation. To account for this, we also restricted our analysis to
sessions for which the psychophysical performance is better than
the neuronal sensitivity by excluding sessions for which P/N � 1
(Fig. 8A, gray data points). The resulting best fitting curve (red
line) still significantly deviates from unity (red represents CIs),
indicating that the predicted choice correlations for optimal lin-
ear readout are systematically higher than those measured. We
also observed a negative correlation between choice correlations
and the neurometric threshold (Spearman’s rank r � �0.29, p �
0.0024, n � 104; Monkey 1: Spearman’s rank r � �0.38, p �
0.0027, n � 62; Monkey 2: Spearman’s rank r � �0.14, p � 0.36,
n � 42; Fig. 8B), as often found for perceptual discrimination
tasks (Celebrini and Newsome, 1994; Britten et al., 1996; Romo et
al., 2002; Uka and DeAngelis, 2004; Purushothaman and Bradley,
2005; Gu et al., 2008; Liu et al., 2013a, b; Nienborg and Cumming,
2014). Contrasting with the results for the coarse disparity dis-
crimination task, we found that there was neither a significant
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fitting slope is 2.01, CI: [1.28, 3.86], red solid and red shading) deviate significantly from unity
(dashed line).
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correlation between predicted and observed choice correlations
(Spearman’s rank r � 0.042, p � 0.77, n � 51; Monkey 1: Spear-
man’s rank r � �0.20, p � 0.29, n � 30; Monkey 2: Spearman’s
rank r � 0.41, p � 0.065, n � 21; Fig. 8C), nor a significant
correlation between choice correlation and the neurometric
threshold (Spearman’s rank r � 0.061, p � 0.67, n � 51; Monkey
1: Spearman’s rank r � 0.14, p � 0.45, n � 30; Monkey 2: Spear-
man’s rank r � �0.022, p � 0.93, n � 21; Fig. 8D). (We verified
that the absence of a significant correlation in Fig. 8D could not
be explained by the influence of the background disparity on the
neurometric threshold. The partial correlation between neuro-
metric threshold and choice correlation remained nonsignificant
when accounting for the effect of �background disparity� (partial
rank correlation, r � 0.078, p � 0.590.) Similarly to the results for
the coarse disparity discrimination task, the observed choice cor-
relations were lower than those predicted for the fine disparity
discrimination task (Fig. 8C, black solid line), even when restrict-
ing the analysis to sessions for which the psychophysical perfor-
mance exceeded the neuronal sensitivity (Fig. 8C, red solid line).

We next wondered whether the relationship predicted for op-
timal linear readout in the presence of information-limiting
correlations may apply early in the trial, during which choice
correlations are thought to be dominated by bottom-up process-
ing compared with late in the trial, when they are thought to also
reflect feedback signals (Wimmer et al., 2015). We therefore re-
peated the analyses for the fine and coarse disparity discrimina-
tion task using the neural data for only the first 500 ms or last 500
ms in each trial. Because we only had measurements of the psy-
chophysical threshold for 2 s stimulus presentations, we adjusted
these, assuming a weighted integration of the stimulus informa-
tion as previously reported for the coarse disparity discrimina-
tion task (Nienborg and Cumming, 2009). These additional
analyses revealed that for neither task or time interval did the
choice correlations match those predicted for optimal linear
readout of a population with information-limiting correlations
(Fig. 9). The results were similar when assuming perfect integra-
tion (data not shown).

Thus, although choice correlation for the coarse task followed
the pattern predicted for optimal linear readout in the presence of
information-limiting correlations, for neither task did the pre-
dicted relationship hold quantitatively.

Discussion
The goal of this study was to determine whether disparity-
selective neurons in visual area V2 show decision-related activity
(CPs) for a fine disparity discrimination task, to understand the
origin of CP for this task in downstream areas. Psychophysical
results suggest that this fine disparity discrimination relies on
relative disparity judgments, and V2 is the first area in the visual
processing hierarchy known to have a population of neurons
selective for relative disparity (Cumming and Parker, 1999;
Thomas et al., 2002). We found that neurons in V2 were very well
suited for the task. Indeed, although the discrimination perfor-
mance of individual neurons was on average somewhat worse
than that of the animal, the most selective neurons exceeded the
discrimination performance of the animals. Additionally, the ob-
served neuronal discrimination performance substantially ex-
ceeded that previously reported for visual area V4 in the same
task, by approximately an order of magnitude (Shiozaki et al.,
2012). Moreover, we observed decision-related activity for this
task in V2, with a mean CP of 0.58, which weakly exceeded that
previously observed for visual area V4 (0.55). Our results there-
fore make V2 the earliest stage in the visual hierarchy for which

decision-related activity has been reported for this task. Whether
V4 inherits this activity from V2 could depend upon whether
disparity-selective cells in V2 project to V4. Disparity selectivity is
found mostly within the thick stripes of V2, which are not the
main source of projections from V2 to V4. We cannot be certain
whether the neurons we recorded project to V4 or whether they
were in the thick stripes.

Interestingly, the degree to which V2 neurons showed
decision-related activity did not correlate with their tuning for
relative disparity. At first sight, the absence of a relationship be-
tween CP and a neuron’s selectivity for relative disparity is sur-
prising. But extensive computational (Shadlen et al., 1996; Cohen
and Newsome, 2009), analytical (Haefner et al., 2013; Pitkow et
al., 2015), and experimental (Liu et al., 2013b) work has high-
lighted that CPs depend on correlations between neurons in the
population. Because these correlations cannot be explained by
changes in the stimulus, they are often referred to as “noise cor-
relations” (for review, see Cohen and Kohn, 2011). Thus, pro-
vided neurons with and without selectivity for relative disparity
show appropriate noise correlations, these results may be recon-
ciled with simple pooling models. It is also important to note that
neurons selective only for absolute disparity may nonetheless
provide the critical input to a later computation of relative dis-
parity. Indeed, the neurometric thresholds of neurons in V1 for
absolute disparity are comparable with psychometric judgments
of relative disparity (Prince et al., 2000). It may be for this reason
that we find no difference in neurometric threshold between neu-
rons selective for absolute or relative disparity in V2.

Additionally, we found that, for both tasks, the responses of V2
neurons are not quantitatively compatible with the theoretical pre-
dictions developed by Pitkow et al. (2015) for an optimal linear
readout of a neuronal population containing information-limiting
correlations, although the results for the coarse task followed the

A B

C D

Figure 9. The predictions for optimal linear readout of the V2 population with information-
limiting noise also fail for the first and last 500 ms of each trial. For each panel, neural data for
the respective 500 ms bin during the trial are considered. The corresponding psychometric
thresholds are scaled assuming integration during the respective 500 ms bins of the visual
information according to previously measured weights (Nienborg and Cumming, 2009). The
results were similar to those assuming perfect integration (data not shown). A, B, The same
analysis as in Figure 8A is shown but for the data in the first (A) or last (B) 500 ms bin of each trial.
The best fitting slopes (A: black solid: 5.61, CI: [3.89, 8.97], red solid: 4.11 CI: [2.78, 8.04];
B: black solid: 5.61 CI: [3.75, 7.36], red solid: 3.63 CI: [2.32, 9.13]) deviate significantly from
unity. C, D, The same analysis as in Figure 8B is shown but for the data of the first (C) or last (D)
500 ms bin of each trial. As for the coarse disparity discrimination task, the best fitting slopes (A:
black: 39.31 CI: [7.68, 10 8], red: 3.96 CI: [1.91, 21.33]; D: black: 23.18 CI: [8.05, 10 6], red: 12.77
CI: [4.12, 10 7]) deviate significantly from the predictions for optimal linear readout in the
presence of information-limiting correlations.
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predicted pattern qualitatively. Because the neurometric and psy-
chophysical threshold were similarly affected by day-to-day changes
in the stimulus, such as the background disparity (compare Fig. 3,
top), the failure to predict choice correlations for the fine disparity
discrimination task is unlikely due to stimulus-induced variability of
neuronal thresholds. This poses important questions about the ori-
gin of CP in downstream areas. One possibility is that a nonlinear
transformation of the signals from V2 is used to construct down-
stream responses, and then a linear decoder is applied to those
downstream areas. Under this hypothesis, the current theoretical
framework, based on pooling, makes no quantitative predictions
about CP in V2. This poses a significant challenge, best exemplified
by neurons that are not sensitive to relative disparity, and yet show
CP in the fine task (Fig. 5). A nonlinear transformation of these
signals is required to represent relative disparity, thought to be used
for making these fine judgments. If simple pooling of these responses
does not explain behavior, then we have no quantitative account of
CP in these neurons. Previously, it might have been possible to think
that a linear decoding of a downstream population is approximated
by a linear decoding of V2. The fact that CP does not follow the
predicted relationship (Fig. 8) demonstrates that this approximation
is not applicable. It is also important to note, that under the demands
of the task we used, a relative disparity representation is not a re-
quirement (because the background disparity was held constant), so
that a linear readout of V2 neurons could, in principle, have been
used to perform the task. This is similar to results reported for
Otolith afferent fibers when animals report the direction of transla-
tion in the dark (Yu et al., 2015). The relationship between CP and
psychophysical and neurometric performance does not follow the
predictions of linear decoding, but there are reasons to believe that
nonlinear operations are required to generate a useful sensory rep-
resentation (Yu et al., 2015; Cumming and Nienborg, 2016).

A second possibility is that CP does not simply reflect the
consequences of noise in afferent sensory neurons but arises in
part because a component of noise correlations results from top-
down processes, as empirical and analytical evidence increasingly
suggests (Roelfsema et al., 2004; Cohen and Newsome, 2008; Co-
hen and Maunsell, 2009, 2011; Mitchell et al., 2009; Gu et al.,
2011; Ruff and Cohen, 2014a, b; Rabinowitz et al., 2015). Indeed,
the framework by Pitkow et al. (2015) relies on theoretical work
by Haefner et al. (2013), which requires that the correlated sen-
sory signals are read out without any information about the
sources of the correlation. That is, this theoretical work does not
allow for any centrally generated correlations in sensory neurons
that are discounted when forming a perceptual decision (e.g.,
because they reflect postdecision signals). It is possible that such
postdecision top-down signals late in the trial disrupt the pre-
dicted relationship between CP and the P/N ratio, even if the
sensory activity early in the trial (predecision) is read out by an
optimal linear decoder in the presence of information-limiting
correlations. The dichotomy “early predecision” versus “late
postdecision” is a simplification used here for clarity. Moreover,
our analysis in Figure 9 does not suggest that such a simple dis-
tinction applies. However, more plausible proposals for the dy-
namics of these signals exist (Wimmer et al., 2015; Haefner et al.,
2016).

Together, our results are compatible with the view that sensory
signals in V2 are used for fine disparity judgments in addition to
coarse disparity judgments. But the data are not compatible with a
simple linear decoding of responses in V2. This discrepancy may
reflect variability in how the task-relevant top-down beliefs (Haefner
et al., 2016) are aligned with the different tasks. Alternatively, it may
reflect the importance of downstream computation in forming a

perceptually relevant representation. In both cases, these results
highlight the need for models more sophisticated than optimal linear
decoders to account for decision-related activity in sensory neurons.
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