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Bredfeldt CE, Read JCA, Cumming BG. A quantitative explanation
of responses to disparity-defined edges in macaque V2. J Neuro-
physiol 101: 701–713, 2009. First published December 10, 2008;
doi:10.1152/jn.00729.2007. Previous experiments have shown that
V2 neurons respond to complex stimuli such as cyclopean edges
(edges defined purely by binocular disparity), angles, and motion
borders. It is currently unknown whether these responses are a simple
consequence of converging inputs from a prior stage of processing
(V1). Alternatively, they may identify edges in a way that is invariant
across a range of visual cues defining the edge, in which case they
could provide a neuronal substrate for scene segmentation. Here, we
examine the ability of a simple feedforward model that combines two
V1-like inputs to describe the responses of V2 neurons to cyclopean
edges. A linear feedforward model was able to qualitatively reproduce
the major patterns of response enhancement for cyclopean edges seen
in V2. However, quantitative fitting revealed that this model usually
predicts response suppression by some edge configurations and such
suppression was rarely seen in the data. This problem was resolved by
introducing a squaring nonlinearity at the output of the individual
inputs prior to combination. The extended model produced extremely
good fits to most of our data. We conclude that the responses of V2
neurons to complex stimuli such as cyclopean edges can be ade-
quately explained by a simple convergence model and do not neces-
sarily represent the development of sophisticated mechanisms that
signal scene segmentation, although they probably constitute a step
toward this goal.

I N T R O D U C T I O N

Recent evidence suggests that neurons in primate V2 have
responses that are selective for discontinuities of various stim-
ulus attributes in their receptive fields (RFs) such as angles
(Haynes et al. 2004; Ito and Komatsu 2004), edges defined
only by discontinuities in horizontal disparity (cyclopean
edges) (Bredfeldt and Cumming 2006; von der Heydt et al.
2000; Zhou et al. 2000), and motion borders (Marcar et al.
2000). This response pattern is a marked departure from the
properties of V1 cells, which respond primarily to variation in
luminance and are generally spatially homogeneous for other
stimulus properties such as orientation, disparity, and motion
(Hubel and Wiesel 1962; Nienborg et al. 2004). The result is
that single neurons in V2 are able to signal the presence of
more complex features than single neurons in V1. These
signals may ultimately be used for high-level perceptual tasks,
such as figure–ground segregation (Qiu and von der Heydt
2005). It is even possible that the measured V2 responses could

form the neural substrate for such subtle perceptual judgments,
i.e., that V2 neurons respond to all edges that represent a
perceived figure–ground boundary and only to such edges. In
this case the response would be expected to be independent of
how the boundary was defined (e.g., by disparity, luminance,
and motion direction) and of the precise disparities (lumi-
nances, etc.) on either side of the edge. Such a response would
have to draw on stimulus information from well outside the
neuron’s classical receptive field.

An alternative possibility is that the observed V2 responses
compute a relatively simple function of the retinal stimulus within
the receptive field. A purely feedforward mechanism as simple as
combining the responses of several V1 neurons [similar to the
way in which Hubel and Wiesel (1962) proposed that simple cells
are constructed from the responses of LGN neurons] might suffice
to explain observed neuronal responses in V2. Several groups
have previously suggested that this type of model could po-
tentially explain angle selectivity (Boynton and Hegde 2004;
Ito and Komatsu 2004) and selectivity for complex spatial
stimuli (Hegde and Van Essen 2000). However, to date there
has been no quantitative analysis of how well these simple
models account for the neuronal data and it is therefore not yet
clear that such simple explanations of responses to complex
stimuli are adequate. Here we perform such a quantitative
evaluation of our recent data demonstrating responses of V2
neurons to edges defined only by disparity (Bredfeldt and
Cumming 2006). These data are rich enough (a total of 62 edge
conditions were measured for each cell) to provide an adequate
test for simple feedforward models. We described broadly
three types of responses (very similar to those originally
described by von der Heydt et al. 2000), each of which could
be explained qualitatively by supposing that they result simply
from combining the responses of two disparity-selective V1
neurons that have different preferred disparities. First, some
neurons respond to a disparity-defined edge at one orientation,
but do not respond to the same edge when the disparities are
swapped (responses to only one disparity sign). This pattern
can be produced by combining the output of two V1 neurons
with receptive fields that are slightly displaced (Fig. 1, A–E).
Second, many neurons respond to both signs of a particular
orientation of the cyclopean edge. This pattern can be
produced by combining the output of two V1 neurons of
different sizes, as illustrated in Fig. 1F. Finally, a substan-
tial proportion of neurons respond to all edge orientations
more strongly that to either disparity alone. These might be
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explained with a concentric arrangement of receptive fields,
like that shown in Fig. 1G.

Each of these qualitative explanations invokes only two
V1-like subunits, which differ in their response to the two
disparities defining the edge. Note that these schemes describ-
ing the arrangement of the input subunits provide only an

explanation of how certain orientations and signs of cyclopean
edges can produce a stronger response than either disparity
alone. It may be that other aspects of the response are not
compatible with such simple schemes. Only quantitative mod-
eling of the whole response can determine whether the simple
schemes are adequate. Indeed we will show that in most cases
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the simplest form of this model is not compatible with the
observed responses, but a minor modification produces a very
good description. We conclude that a simple feedforward
model can explain the pattern of cyclopean edge responses in
V2. We suggest that other tuning characteristics (i.e., tuning for
motion borders and angle stimuli) might be similarly explained
by assigning different motion and orientation selectivity to the
subunits.

M E T H O D S

Data collection

The data collection is described in detail by Bredfeldt and Cum-
ming (2006). In brief, extracellular recordings of single units from V2
of awake macaques were made while stereograms were presented via
a haploscope. The location of the RF center was initially determined
with interactively positioned bars and luminance gratings and then
quantitatively mapped by presenting thin strips of luminance gratings
at different locations (Read and Cumming 2003). Random-dot stereo-
grams 5° in diameter (larger than all the RF diameters) were then
centered on this location. The stereograms were divided into two
halves by a single edge and defined only by a difference in horizontal
disparity between the two sides of the stereogram. Binocularly, the
stimulus appears as two half-discs, floating at different depths. The
disparity-defined edge was presented at six orientations (separated by
30°), and at five locations (separated by 0.55°) for each orientation.
Figure 2A shows the stimuli used in the experiment. Light gray and
dark gray are used to represent the two component disparities that
make up the edge. Swapping the two disparities across the edge is
defined to be changing the “sign” of the disparity edge. The stimuli are
arranged on the polar axes used to present results both here and in a
previous study (Bredfeldt and Cumming 2006). The axes are divided
radially into segments and concentrically into rings. The center of the
plot and the outermost ring represent control stimuli with uniform
disparity. Stimuli drawn in the same ring have edges at the same
distance from the center of the receptive field. Stimuli within a given
radial segment have the same edge orientation, e.g., vertical or
horizontal. Stimuli 180° apart, i.e., in opposite segments but at the
same radial distance from the center, have edges with the same
orientation but with opposite disparity signs and with locations on
opposite side of the center. Note that the same set of cyclopean edge

orientations were used in all cells, regardless of the preferred orien-
tation for luminance-defined contours.

All neurons that showed significantly stronger responses to dispar-
ity-defined edges than to uniform disparity fields (for details, see
Bredfeldt and Cumming 2006) and whose responses passed a one-way
ANOVA (P � 0.05) for the effect of cyclopean edge configuration
were entered into the current study. The choice of the two disparity
values was not based on the responses to disparity in a uniform
random-dot stereogram (RDS) (many neurons showed no disparity
selectivity under these circumstances). We relied on an initial explo-
ration of different disparity-defined edges by hand to identify a
combination that produced audible activation.

Model details

The model consists of two subunits with different positions, sizes,
and disparity responses, which converge on a single V2 cell. In reality
it is likely that more than two subunits converge on a single V2 cell.
However, since our stimuli contained only two disparities, a model
with two subunits should be sufficient to describe differential re-
sponses to the two disparities, whereas adding more subunits would
risk overfitting. The model subunits behave like the binocular energy
model, which provides a good account of the properties of binocular
neurons in striate cortex. For the purposes of this study, the binocular
energy model has an important property: the response to an RDS
containing two disparities is simply the mean of the responses to each
disparity alone, weighted by the fraction of the RF covered by each
disparity. Thus it is not necessary to implement a full binocular
energy model: we need to know only the response of each subunit
to each disparity (S1d1, S1d2, S2d1, S2d2) and the shape of each
subunit RF. The response of subunit 1 to the cyclopean edge
stimulus is then given by

RS1 � AS1 � S1d1 � �1 � AS1� � S1d 2 (1)

where S1d1 and S1d2 are the responses to the two disparities and AS1

is the proportion of the receptive field covered by disparity 1. For
simplicity, the model ignores the fact that, for some orientations, the
stimulus may contain a small uncorrelated region (see following text);
thus the proportion of the receptive field covered by disparity 2 is (1 �
AS1). Figure 3 shows a schematic of the model with all spatial
parameters indicated. AS1 is calculated by integrating the volume of the
two-dimensional Gaussian S1 over the region covered by disparity 1. The

FIG. 1. Diagram of the model. Two disparity-selective V1 cells (red and blue triangles) with different disparity tuning, position, and size converge on a single
V2 cell (green triangle). The retinal receptive fields of each V1 cell are shown on the retinas (A), colored-coded red and blue according to the V1 cell they project
to. The receptive fields are at different locations on the retina, but have the same position offset between left and right eyes. The red and blue cells’ inputs to
the V2 cell differ in sign. B: the receptive field of the V2 cell in cyclopean visual space. The region shaded green shows visual directions where the cell is sensitive
to stimuli. The blue and red subregions show the cyclopean receptive fields of the component V1 cells. C: the disparity tuning curve for the blue V1 cell, in
response to stimuli with uniform disparity. Two example stimuli are shown along the horizontal axis; we use dark and light gray to represent the preferred and
null different disparities of this V1 cell. The cyclopean position of the blue receptive field is superimposed. The disparity tuning curve for the red V1 cell would
be the same, but upside-down. Thus the dark-shaded disparity is the null disparity of the red V1 cell, whereas the light-shaded disparity is its preferred disparity.
D: the disparity tuning curve that would be obtained from the green V2 cell. The response is constant, i.e., the V2 cell shows no tuning to uniform disparity
stimuli. This is because the inputs from the two V1 subunits are always equal and opposite, as indicated by the red and blue arrows in D (in this simplified linear
model, each model V1 cell is imagined to be capable of providing both positive and negative output; a more physiologically realistic model would achieve the
same result using a push–pull pair of cells). For the dark-shaded disparity, the blue cell provides strong positive input but the red cell provides equally strong
negative input, relative to the response to uncorrelated stimuli. For the light-shaded disparity, the blue cell provides weak negative input, whereas the red cell
provides weak positive input. The net result is the same. E: the response of the V2 cell to cyclopean edge stimuli, made up of the light- and dark-shaded disparities
selected in C but with different edge orientations. Four example stimuli are shown along the horizontal axis, with the cyclopean receptive fields of the V1 subunits
superimposed. The first stimulus has a vertical edge and both V1 subunits are completely covered by their preferred disparities. The V2 response is therefore
the sum of 2 positive V1 responses, showing cyclopean enhancement above the response to uniform disparities. With a horizontal edge, each subunit is covered
half by its preferred disparity and half by its null disparity (thus the half-arrows in E). The increase in response driven by the preferred disparity is cancelled
out by the decrease driven by the null disparity, so the total response of each subunit is the same as that for uniform stimuli. The V2 cell therefore shows no
cyclopean enhancement above or below the response to uniform disparities. When the edge is vertical but the disparities are on the other side, each V1 subunit
is covered by its null disparity, so the response is minimized. Thus this organization produces enhanced cyclopean response for only one edge sign. F: diagram
illustrating an organization that can produce enhanced responses for 2 different edge signs. In the configuration shown, the central red subfield is covered with
its preferred disparity, whereas the blue subfield is covered by a mixture of both disparities. The summed response is greater than that to a uniform disparity.
If the disparities are swapped and the edge is moved to the other side of the central subfield, the same enhancement results. G: concentric subunits lead to
cyclopean edge responses for all orientations so long as the central subfield is just covered by its preferred disparity.
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outer limits of the integration were determined by the size of the
stimulus previously used in our physiological experiments. The final
response of the model is the difference of the responses of the two
subunits passed through an output nonlinearity, half-wave rectification
followed by an exponent

R �  �AS1 � S1d1 � �1 � AS1� � S1d2�

� �AS2 � S2d1 � �1 � AS2� � S2d2� n (2)

Since the two subunits are combined linearly, the choice of a minus
sign in the middle of Eq. 2, as opposed to a plus sign, is immaterial.
We refer to Eq. 2 as the Linear Summation (LS) model. Equation 2
can be rearranged and simplified as follows

R �  �AS1 � �S1d1 � S2d1� � AS2

� �S2d1 � S2sS2� � �S1d2 � S2d2� n (3)

The terms (S1d1 � S1d2), (S2d1 � S2d2), and (S1d2 � S2d2) are
constants and so each represents only one free parameter in the fit.
Thus the LS model contains a total of 13 parameters, used to describe
62 data points. These are (Fig. 3):

● Positions of subregions 1 and 2: S1ctr(x), S1ctr(y), S2ctr(x), S2ctr(y)

● Extents of subregions 1 and 2: S1�(x), S1�(y), S2�(x), S2�(y)

● Orientation of both subregions: �
● Difference in responses of subregion 1 to the two disparities:

(S1d1 � S1d2)
● Difference in responses of subregion 2 to the two disparities:

(S2d1 � S2d2)
● Difference in responses of the two subregions to disparity 2:

(S1d2 � S2d2)
● Output exponent: n

In the RESULTS, we explore an extension to this model that adds one
parameter, but allows us to explore the effect of output nonlinearities
on the subunits.

Stimulus details

We evaluated the model’s response to cyclopean edge stimuli in
which the edge was presented at the same range of orientations and
positions used to collect the physiological data. The stimulus is a
circular dynamic RDS 6° in diameter, where the central 5° contains
two contiguous regions defined by different disparities. The border
between the surfaces forms an edge in depth. Figure 2B illustrates a
cyclopean edge stimulus with a vertical cyclopean edge in the center
of the stimulus. Red and green dots represent the views of the right
and left eyes, respectively; in the actual experiment all dots were black
and white. The stimulus background, which consists of uncorrelated
dots, hides the edges of the cyclopean edge stimulus to prevent
monocular cues to orientation and edge location.

To create the vertical edge shown in Fig. 2B, the green dots have
been shifted to the right on the right side of the edge and to the left on
the left side of the edge. As a result, there is a gap in this area with no
green dots, thus providing a cue to the location and orientation of the
edge. To prevent such cues, the gap created by the horizontal shift is
filled with uncorrelated green dots (uncorrelated dots are outlined in
gray for clarity). This ensures that the dot density is uniform in both
eyes’ views, regardless of disparity. Nonetheless, it is possible that a
response to the lack of binocular correlation could cause a cell to
appear orientation selective (since the size and position of the uncor-

A

B

6º

FIG. 2. Stimulus used to record responses to cyclopean edges. A: polar axes
used throughout this study and its predecessor (Bredfeldt and Cumming 2006)
to represent edge orientation and position. The icon in each segment shows the
corresponding stimulus. B: example of a random-dot stimulus containing a
cyclopean edge. Red and green dots represent the inputs to the right and left
eyes, respectively. Note that in the left half of the stimulus, green dots are
shifted to the left of the red dots, whereas in the right half of the stimulus green
dots are shifted to the right half of the stimulus. This creates a disparity-defined
vertical edge. Gaps in the stimulus (caused by application of disparity to the
dots) were filled with uncorrelated dots, shown here with black outlines. Note
that green and red dots are shown here for illustrative purposes. In the actual
experiment, all dots were black or white. θ
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FIG. 3. Pictorial representation of the spatial parameters used in the model:
�, orientation of subunits; S1�(x), SD x, subunit 1; S1�(y), SD y, subunit 1;
S2�(x), SD x, subunit 2; S2�(y), SD y, subunit 2; S1ctr(x), Location x, subunit 1;
S1ctr(y), Location y, subunit 1; S2ctr(x), Location x, subunit 2; S2ctr(y), Location
y, subunit 2.
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related region change with orientation). However, we were careful to
exclude this possibility when determining that a neuron shows a
response that is specific for the disparity-defined edge. Consequently,
we did not include the small effect produced by the uncorrelated dots
in our modeling. (If responses to uncorrelated dots are included in the
model, it introduces an extra parameter and one that can be exploited
in an unrealistic way, with very large responses for both subunits, to
fit certain response patterns.)

Quantitative modeling

We fit the model described earlier to the responses of 60 V2
neurons that showed significant responses to cyclopean edges. We
imposed several constraints to ensure that fitted values would be
physiologically plausible and computationally tractable. In particular,
we set both lower and upper boundaries on the SDs of the individual
subunit receptive fields. The lower boundary (0.275°) was determined
by the measured edge position spacing, whereas the upper boundary
(2.5°) was determined by the stimulus size (larger SDs would not
produce an appreciable difference in the fitted values). In addition, the
center of each subunit was required to lie inside the area covered by
the stimulus. In a few instances, the model exploited extremely
implausible output nonlinearities. To prevent this, the output exponent
(n in Eqs. 2 and 3) was not allowed to exceed a value of 40.

Finally, because the variance in neuronal spike counts increases in
proportion to the mean count, we fit the square root of the model’s
equations to the square root of the firing rate, thus eliminating
dependence of the variance on the count (Prince et al. 2002). All fits
were optimized using a least-squares fitting procedure in Matlab 7.0.4.

Evaluating model fit

To quantify how well the model fit the V2 data, we measured the
proportion of variance between mean responses (signal variance) that
was explained by the fit. However, in many cases this simple metric
could be misleading. In cases where much of the signal variance is
explained by differences in the response to the two uniform dispari-
ties, even a single V1-like subunit can successfully explain a large
proportion of the variance without explaining any of the response
enhancement for cyclopean edges. Figure 4 provides an example of
this phenomenon. Although the data show a clear cyclopean edge
enhancement for both signs of a vertical edge and a horizontal edge,
the cyclopean edge enhancement is small relative to the difference
between the uniform disparity responses for all but one of the edge
orientations/signs. Consequently, much of the variance is explained
by a single subfield model that overestimates the response to one of
the two uniform disparities (dashed line in Fig. 4; dotted line indicates
the mean of the response, or the straight-line fit that would account for
exactly zero of the signal variance). The single-subunit fit shown here
explained 87% of the signal variance for the data shown in Fig. 4.
Nonetheless, this single-subfield model fails to capture the cyclopean
enhancement. Thus to understand how well a two-subfield model is
able to explain the response to disparity-defined edges, we must first
isolate that part of the response produced by the edges, not by their
constituent disparities alone.

To do this, we first fit both a single-subunit model and the two-
subunit model to the raw data set. We then subtract the single-subfield
model fit from both the data and the two-subfield model fit to obtain
the portion of the response that cannot be explained by the single-
subfield model. We refer to these differences as the cyclopean re-
sponses of the neuron (RC) and the model fit (FC) and compare their
variance. In cases like that illustrated in Fig. 5 (bottom row), much of
the response variance can be explained by a single subfield (no
response lies far outside the range covered by the two uniform
disparities). In such cases the magnitude of the cyclopean response,
although significant, is not very much greater than the magnitude of
the sampling noise. Consequently, even a perfect model would not be

expected to explain 100% of the variance in RC. Therefore we use the
measured variability in data to estimate what fraction of the variance
in RC we can expect to explain.

For each experimental condition, we calculate the variance associ-
ated with that mean and use the mean of these variances across all
conditions to estimate the variance attributable to sampling noise,
�err

2 . The variance that we would expect a perfect model to explain is
then var (RC) � (N � np) � �err

2 , where N is the number of stimulus
conditions (62) and np is the number of parameters in the model
(Haefner and Cumming, unpublished). When examining the cyclo-
pean response after subtracting the best-fitting single-subunit model,
np is the difference in the number of parameters between the one-
subunit (8 parameters) and two-subunit models (13 parameters for the
LS model).

R E S U L T S

This study assesses the ability of a simple feedforward
model, combining two V1-like subunits, to capture the major
characteristics of cyclopean edge tuning in macaque V2. We
have previously described the responses of macaque V2 cells
to cyclopean edges with a range of orientations and edge
positions (Bredfeldt and Cumming 2006). Briefly, many V2
cells respond selectively to cyclopean edges, giving larger
responses for the edge than they do for the component dispar-
ities that are used to create the edge. The examples in Fig. 5
capture the variation we found in response patterns. (Note that
all examples shown herein are neurons different from those
shown in Bredfeldt and Cumming 2006.) The pseudocolor
plots (left columns) represent responses to all orientations and
positions. As shown in Fig. 2A, the angular position of a
patch represents edge orientation, whereas radial distance
from the center represents edge position (with the middle of
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FIG. 4. Example of a response in which most of the variance can be
accounted for by a single subunit model. Solid lines indicate the observed
responses; dashed lines indicate the fitted single subunit model. Dotted line
represents the mean of the responses shown here. Stimulus inset shows the
best- fitting receptive field for the single-subunit model. The model overesti-
mates the response to one of the uniform disparities (marked with open
symbol), which allows it to fit several points that show moderate cyclopean
enhancement, as well as the points that fall between the 2 uniform disparity
responses. For the data shown here, the single-subunit model can account for
87% of the signal variance, even though it does not capture the features of the
response that demonstrate cyclopean edge enhancement.
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the five concentric rings representing an edge in the center
of the stimulus). The central disc and the outermost ring
represent the responses to the component disparities (control
stimuli with uniform disparity). These can be viewed as
conditions in which the edge location lies outside the stim-
ulus, reflected by their radial location (see also cross sec-
tions in the rightmost columns of Fig. 5).

For each example (and for the examples throughout) the
orientation that produced the maximum response is marked
with blue arrows, whereas the orientation orthogonal to the
preferred orientation is marked with green arrows (darker
colors represent the sign of the edge that produced the larger
response). The response at these orientations is replotted in the
line plots in the two rightmost columns. This view makes it
easier to see how cyclopean enhancement and suppression vary
as a function of edge position, with the two disparity signs
superimposed on the same line plots. The response is fre-
quently tuned for edge orientation (Fig. 5A), although in
general the tuning is weaker than that found in V1 for lumi-
nance-defined edges. We frequently observed responses to
both signs of a disparity-defined edge, although the maximum
response for each disparity sign usually occurred at different

edge locations (Fig. 5B). However, a substantial proportion of
cells showed very little orientation selectivity (Fig. 5C), despite
showing stronger responses to disparity-defined edges than to
either disparity.

Our model consists of two subunits that are combined at the
level of V2 cells, followed by half-wave rectification and a
variable output nonlinearity (a free parameter, n, in Eqs. 2 and
3). Figure 3 illustrates the model and lists the spatial parame-
ters. Each subunit behaves like a binocular energy-model cell
with a two-dimensional Gaussian receptive field envelope. The
subunits differ in size, location, and in their responses to the
two disparities contained in the stimulus, but are constrained to
have the same orientation. The model would respond maxi-
mally if each subfield was stimulated solely by its preferred
component disparity. Because the subunits generally overlap,
this stimulus often could not be realized.

Figure 6 illustrates the model’s output for three different
spatial configurations that produce response patterns qualita-
tively similar to the example responses in Fig. 5. The leftmost
column shows the arrangements of the two subunits (white and
black lines, drawn at 1SD). The gray background represents the
relative size and location of the stimulus.

50

ec

50

ec

50

0

S
p

/s
e

0

S
p

/s
e

0

0

100

0

100

S
p

/s
ec

100

S
p

/s
ec

0

0

80

S
p

/s
ec

0

80

S
p

/s
ec

80

0

Edge Position (º)Edge Position (º)

ruf759

ruf599

ruf735

B

A

C

FIG. 5. Examples of cyclopean edge responses previously recorded in V2 (Bredfeldt and Cumming 2006). For each example, responses to all edge
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A: orientation and sign tuned cyclopean edge response. B: neuron that responds to both signs of a preferred orientation edge. C: example that responds to all
orientations of a cyclopean edge.
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Figure 6A illustrates the case in which two elongated sub-
units are offset horizontally. This model cell is maximally
stimulated by a vertical edge located between the two subunits
(indicated by the dashed line). The line plot in the third column
shows what happens as the vertical edge is swept across the
model cell. When the edge is located at the far left of the
stimulus, both subunits are stimulated with S1’s preferred
disparity and the model output is the linear combination of
each subunit’s response to that disparity. As the edge moves
across the receptive field in the preferred direction, S2 begins
to be stimulated with its own preferred disparity, leading to
response enhancement. When the edge reaches the middle of
the stimulus, both S1 and S2 are predominantly stimulated with
their preferred disparities and the response enhancement
reaches its peak. As the edge continues advancing, S1 becomes
predominantly stimulated by its nonpreferred disparity and its
response declines, leading to a decline in total model output.
Swapping the disparities across the edge has a complementary
effect: in this configuration, no edge location can stimulate
both subunits with their preferred disparities. Rather, the cen-
tral location predominantly stimulates both subunits with their
nonpreferred disparity, causing response suppression that is
maximal for a centrally located edge.

The second response pattern—that of orientation-tuned edge
responses for both signs of a cyclopean edge—can be achieved
by rearranging the model’s subunits, as shown in Fig. 6B. In
this case, a vertical edge to one side of the stimulus center
(dashed lines) produces response enhancement, whereas the
same edge reflected across the center of the stimulus produces
strong response suppression. Swapping the disparities across
the edge produces the same pattern of results, in complemen-
tary edge positions. Note that this model cell would produce a
much stronger response for a cyclopean bar stimulus, which
would stimulate both flanks of the larger subunit with its
preferred disparity. Finally, the bottom row illustrates a center–
surround subunit configuration, which produces cyclopean en-

hancement at all orientations and edge signs, similar to that
seen in Fig. 5C.

Thus a simple linear combination of two V1-like subunits
can qualitatively explain many aspects of the responses seen in
V2 neurons to disparity-defined edges. However, one property
of all three configurations in Fig. 6 does not match the re-
sponses of most neurons in the data set. For every configura-
tion that produces an enhanced response, reversing the dispar-
ity sign produces substantial suppression (response rate lower
than that of either disparity alone). The reason for this pattern
is simple: net enhancement occurs when both subfields are
stimulated predominantly with their preferred disparity. Swap-
ping the disparities then means that both subunits are predom-
inantly stimulated by the nonpreferred disparity. Although the
output nonlinearity reduces the magnitude of the suppression
(relative to response enhancement), it was still much stronger
than was seen in real neurons. In real neurons, this cyclopean
suppression was uncommon and, when it did occur, it tended to
be considerably weaker than response enhancement for the
preferred edge stimulus.

Quantitative modeling

As a result of this feature, the linear summation model did
not account very well for the observed responses in many
cases. In the few cases where the LS model did provide a good
quantitative account (Fig. 7 illustrates three examples), this
was usually because the neuronal responses showed weak
cyclopean suppression at the predicted location and the asym-
metry between the strength of enhancement and suppression
could be captured by the effect of the expansive output non-
linearity (Fig. 7, A and C). The maximum fitted exponent for
the LS model was 33.3, allowing the model to fit a substantial
difference in the magnitude of cyclopean enhancement and
suppression, although the median value was 2.5 (similar to
previously described estimates of the output nonlinearity of
cortical neurons; Anzai et al. 1999). In a number of additional
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FIG. 6. Adjusting the size, shape, and locations of the sub-
units produces different patterns of cyclopean edge responses.
Column 1: representation of the size and location of the subunits
of the linear model, drawn at 1SD. Columns 2–4: example model
responses, using the same plot conventions as in Fig. 3. A:
elongating both subunits and organizing them in parallel pro-
duces a cyclopean peak for the preferred sign and suppression
for the opposite sign of an edge in the same location. B and C:
when one subunit surrounds the other, responses are produced
for both signs of the edge. In B, one elongated and one circular
subunit produce responses that are orientation tuned for both
signs of the edge, provided the edge is appropriately positioned.
When the central subunit is entirely covered by its preferred
disparity, but the surrounding subunit still has a substantial
fraction covered by its preferred disparity, enhancement (rela-
tive to uniform disparity) results (as in Fig. 1B). In C, a
center–surround configuration produces both cyclopean re-
sponses at all edge orientations. In both B and C, the model
shows cyclopean suppression as well as enhancement for all
orientations that respond to the edge.
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cases, such as the example in Fig. 7B, the extremely low
response to at least one of the component disparities allowed
the predicted suppression in the model to be rectified; as a
result, the model was able to fit large response peaks without
large errors where suppression was not evident.

For each example, the complete data set is shown as a
two-dimensional image map in the far left column of Fig. 7,
whereas the best-fitting model response is shown in the second
column. The third column displays the error between the data
and the model response. Comparing the image maps for the
data and the best-fitting model response for the examples in
Fig. 7 reveals that the model was able to accurately capture the
preferred orientation and sign and the preferred edge position.
The edge location plot in the rightmost column of Fig. 7C
shows the individual data points for the most responsive
orientations (data: solid lines; model: dashed lines; opposite
signs shown with dark and light blue).

We fit the model to the cyclopean edge responses of 60
macaque V2 cells, taken from the study of Bredfeldt and
Cumming (2006). To quantitatively determine how well the
model fit the data, we first factored out the amount of variance
that could be accounted for by a single-subfield model, leaving

the variance that can be attributed to the cyclopean signal (see
METHODS for details). We then determined how much of the
cyclopean signal variance could be explained by the two-
subfield model. The model accounts, respectively, for 43, 31,
and 49% of the cyclopean signal variance in the example cell
data sets in Fig. 7 (86, 85, and 74% of the total signal variance).

For the majority of cells, the LS model explained substantially
less of the cyclopean signal variance than in these examples. The
examples in Fig. 8 show the limitation of using a simple output
nonlinearity to minimize the suppression in the model’s output:
although it can reduce the magnitude of the expected suppression,
it cannot predict a complete lack of suppression at that location. In
Fig. 8A, the data show strong responses to both signs of an
optimally oriented edge, but the peak responses both occur for
edges in the center of the stimulus. Because the LS model must
produce suppression for one sign of the edge at a given position,
the model cannot fit this response and produces no significant
cyclopean enhancement. Overall, for this cell the best-fitting
two-subunit linear model was able to explain roughly 5% of the
cyclopean response variance.

Figure 8B provides an example of a nonorientation specific
cell that is also poorly fit by the LS model. For this example
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cell, the maximum response occurs at different edge locations.
However, at locations where one disparity sign produces en-
hancement, the opposite disparity sign still produces a response
that is larger than the response to one of the uniform dispari-
ties, and thus cannot fit the linear summation of two energy
models followed by an output exponent, which would predict
suppression at this location.

A simple modification to the LS model

A relatively simple modification to the model allows it to
reconcile the observed magnitudes of enhancement and sup-
pression much more successfully. We simply propose that the
output of each subunit is passed through an expansive nonlin-
earity (half-squaring) before the subunits are combined. Al-
though we did not find it necessary to vary the value of this
exponent, introducing this nonlinearity did introduce one extra
free parameter to the model. In the LS model, any baseline
activity in the subunits is equivalent to a single baseline term
[(S1d2 � S2d2) in Eq. 3]. Once we introduce the squaring of
subunit responses this is no longer true and S1d2 and S2d2
become independent parameters, introducing one more param-
eter to the fits

R �  AS1 � S1d1 � �1 � AS1� � S1d2 2

�  AS2 � S2d1 � �1 � AS2� � S2d2 2 n (4)

Since the combination of the subunits here is nonlinear (much
like the way simple cell responses are summed in the energy
model), we refer to this as the Nonlinear Summation (NS)
model. Figure 9 shows that this model provides a much better
account of the examples shown in Fig. 8 for the LS model. In

particular, the NS model does not require that suppression
occurs for edge signs opposite to those that produce response
enhancement.

Population analysis

Figure 10 compares the success of the LS model and the NS
model in describing the responses of 60 V2 neurons. Solid-
colored points indicate example cells shown in Figs. 7–9. We
use cyclopean signal variance to measure the quality of the fit
rather than total signal variance; this allows us to estimate how
much the two-subunit model improved the fit relative to a
single-subunit model. However, for many cells the cyclopean
signal variance was small relative to the total signal variance
due to large differences in the responses to the two component
disparities. For such cells, the magnitude of the cyclopean
signal may not be much greater than the noise; thus for each
model we compare the fraction of variance in the cyclopean
response explained, against the fraction of variance we expect
to explain with a perfect model (limited by noise; see METH-
ODS). Points along the unity line indicate that the model was
able to explain as much of the cyclopean signal variance as we
would expect given the level of noise in the data.

The LS model did a poor job of describing the data and most
data points lay well beneath the identity line (Fig. 10A). In
40/60 cases, the fit was able to explain �25% of the cyclopean
signal variance. For the 20 cells in which the fit was able to
explain 	25% of the cyclopean signal variance, 12 had re-
sponses near zero to at least one component disparity (�10%
of their peak response; see example in Fig. 5A). As a result the
absence of suppression did not penalize the fits; at locations

Data Model Error Position tuning

100

50

0

50

S
p

/s
ec

Edge Position (º)

-50

0

50

0

0

50

100

S
p

/s
ec

-20

0

20

0

100

Edge Position (º)

ruf599

duf541
B

100
A

FIG. 8. Example of 2 responses that are not well fit by the LS model. Figure conventions same as those used in Fig. 7. A: this response shows cyclopean edge
enhancement for both edge signs for horizontal edges in the middle of the stimulus. Uniform disparity responses are elevated and there is little to no suppression.
The model cannot show cyclopean enhancement for both signs of a cyclopean edge in the same edge positions. B: this example shows response enhancement
to opposite edge signs in different locations, but shows no evidence of response suppression. The model fails to fit the data because it cannot fit both edge signs
without showing complementary suppression, which is not seen in the data. As a result, the model predicts almost no cyclopean enhancement and explains almost
none of the cyclopean variance (�0.05 in both cases).

709MODELING CYCLOPEAN EDGES IN V2

J Neurophysiol • VOL 101 • FEBRUARY 2009 • www.jn.org

 on A
pril 7, 2009 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


where the model predicts substantial suppression, rectification
means that the predicted response is still close to that observed.

As illustrated by the examples in Fig. 9, the final model was
much more successful, with the majority of neurons clustered
around the identity line in Fig. 10B. The proportion of cyclo-
pean variance that the model explained (mean 55%) was
similar to that expected given the variability in the data: the
mean ratio (% variance explained/% variance expect to ex-
plain) was 0.96. On a cell-by-cell basis, a �2 test for goodness
of fit indicates that 42/60 cells did not deviate significantly
from the NS model. These cells are plotted in red in Fig. 10B.
In comparison, only 13/60 cells passed the �2 goodness-of-fit
test for the LS model. Thus the two-subunit model, provided
we include an output nonlinearity on each subunit, successfully
describes the main features of the responses produced in V2
neurons by disparity-defined edges.

Properties of model subfields

Our model fits allow us to estimate the size and location of
two subfields that contribute to the response of V2 neurons. It
seems likely that most V2 cells receive input from more than
two V1 neurons, in which case our “subunits” may be better
thought of as the net effect of a number of V1 inputs. Com-
paring the properties of our fitted subunits (size and elongation)
with reported measurements in V1 might clarify how our
subfields related to real V1 neurons. Figure 11A shows a
histogram of the subunit SDs. The median value (0.74) is
approximately threefold larger than V1 receptive fields, which
have been reported to have SD � 0.27 for similar eccentricities
(Malone et al. 2007). A similar estimate is produced by
measures based on area summation (Cavanaugh et al. 2002).
This comparison suggests that our V2 subfields receive input
from multiple V1 cells. In many respects, this makes it all the
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more remarkable that our model, based on the disparity selec-
tivity of only two subunits, explains the data so successfully.

We examined the geometrical configuration of the subunits
for each cell, to see whether any of the example configurations
in Fig. 6 was most representative. We found a striking variety
of configurations, with no particular pattern predominating.
Most of our quantitative measures of the relationship between
the subunits’ geometry revealed no single pattern that was
particularly common. The only consistent feature was that the
subunits did tend to have substantial spatial overlap. We
computed the distance between the centers of the subfields
normalized by the size of the subfields (square root of area).
More than 85% of the subfields are separated by �0.5SD and
only two cells are fit with subfields 	1SD apart (Fig. 11B).
These results suggest that there may be no systematic organi-
zation of the spatial segregation of inputs with different dis-
parity preference; rather cyclopean edge responses may occur
as a side effect of the convergence of multiple inputs respond-
ing to similar spatial locations without strict regard to disparity
tuning. By chance, many of the resulting receptive fields will
have “hot spots” for different disparities, which would produce
the type of results seen in Bredfeldt and Cumming (2006).

D I S C U S S I O N

Several studies have previously reported that V2 neurons
respond to discontinuities in features such as disparity, motion,
and orientation in a way not seen in V1. One interpretation of
these results is that V2 neurons signal the segmentation of the
visual scene (Qiu and von der Heydt 2005). A second possi-
bility is that these signals are based on simple convergence of
afferent inputs, which may be useful for scene segmentation,
but do not represent its neural basis. Here we put the latter
explanation to a quantitative test, by using a simple model that
calculates the difference of two V1-like subunit inputs to
describe the responses of V2 neurons. This was applied to our
data on responses to disparity-defined edges (Bredfeldt and
Cumming 2006), which we believe is rich enough to test such
models.

We found that models based on a linear combination of the
two subunits produced a poor description of the data. Models
of this sort predict that for each configuration that produces
cyclopean enhancement (responses greater than those produced
by uniform disparities), there is a symmetrical configuration
that produces suppression (response lower than that produced
by uniform disparities). Such suppression was rarely seen in

our data. However, this feature of the data was successfully
captured if we allowed each subunit a static nonlinearity
(squaring) prior to combination. This kind of nonlinearity has
been successfully used in many other models of neuronal
signal processing (e.g., energy models) and has been widely
used in describing the responses of V1 neurons (Adelson and
Bergen 1985; Albrecht and Geisler 1991; Anzai et al. 1999;
DeAngelis et al. 1993; Heeger 1992; Ohzawa et al. 1997).
Indeed its use is so widespread that to use a model with a linear
output function for V1 neurons would require some justifica-
tion.

We were able to provide a good quantitative account of
responses to 62 stimulus configurations using only two sub-
units. However, since our data were gathered using only two
disparities, it is not surprising that the responses could be
explained in terms of a spatial map of the response difference
to the two disparities. Our data would not adequately constrain
models that allow more than two subunits if they were all
allowed independent disparity tuning. Nonetheless, the fact
that this spatial map was well described by the difference of
two Gaussians together with the parameters of those Gaussians
suggest that it does likely represent the combination of a small
number of overlapping V1 receptive fields.

Although our empirical data had 62 statistically independent
samples, frequently (e.g., Fig. 5A) many of these samples had
very similar response values. Consequently, one might expect
a model with �62 parameters to explain the data. The re-
sponses in Fig. 5A might be matched with a relatively simple
descriptive model (e.g., a Gaussian in polar coordinates, re-
quiring only six parameters). Two such Gaussian functions are
required to describe the results in Fig. 5B, but this still requires
two fewer parameters than our model; thus the value of the
model is not that it describes the data with the fewest number
of parameters. Indeed, the linear summation version of our
model has only one less parameter, but does not successfully
describe the data. Rather, the structure of the model means that
there are many patterns of results that it cannot reproduce,
which purely descriptive functions could replicate. For exam-
ple, two distinct regions of cyclopean enhancement, at orien-
tations 90° apart, cannot be reproduced in our model. If one
region of enhancement is produced by a vertical edge, for
example, any other distinct region of enhancement must occur
for a vertical edge with the opposite disparity sign. We con-
firmed this by generating synthetic data with two regions of
enhancement at different orientations and attempting to fit
them. The fits never produced discrete regions of enhancement
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for different orientations. Our model succeeds because this
pattern was not seen in the empirical data. Similarly, even
when our model responds to vertical edges of both disparity
signs, the enhancement occurs at different edge locations (see
Fig. 6B). The explanation for this property can be seen by
examining the right side of Fig. 1F. This shows two configu-
rations that produce enhancement. In each case, each subunit
has the majority of its area covered by its preferred disparity.
If one simply swaps the disparities then each subunit must be
predominantly covered by its less preferred disparity, a con-
figuration that will not produce enhancement. As discussed in
Bredfeldt and Cumming (2006), this is also not seen in the
empirical data. In these cases, the success of our model shows
that when responses to both signs of disparity edge occur, they
are better described by a simple summation than as responses
that are invariant with respect to disparity.

These results show that the simple convergence of inputs
from a small number of V1 neurons onto a V2 neuron can
explain responses to disparity-defined edges. Although this is
not evidence against models that propose a more complex
feature integration (Craft et al. 2007; Zhaoping 2005), it does
indicate the need for more quantitative data to distinguish these
two different possibilities. The same principle may apply to
other responses observed in V2 that identify feature disconti-
nuities. Ito and Komatsu (2004) reported responses to angles
defined by two lines. They concluded that a simple linear
summation of responses could not account for the observed
responses. We also found that linear summation could not
explain responses to disparity-defined edges. Importantly, in-
corporating a simple output exponent in the responses of our
V1-like subunits was sufficient to produce a good description
of our data. A model with a similar structure may be sufficient
to describe responses to angle stimuli, as was also pointed out
by Boynton and Hegde (2004). Whether such a simple model
is successful across the whole range of responses observed in
the population would require a quantitative study, of the type
we report here for disparity-defined edges. Similarly, it seems
likely that models of this sort could explain selectivity for
motion-defined borders (Marcar et al. 2000). One interesting
prediction of our simple model may differentiate simple bot-
tom-up models from more complex feature integration. Re-
versing the contrast of one eye’s image (“anticorrelation”)
inverts disparity-selective responses in V1 (Cumming and
Parker 1997). Thus in our model anticorrelation will reverse
the sign of cyclopean edge effects, but the model will still
respond selectively to the cyclopean edge. Note that no addi-
tional simulations are required to demonstrate this. The model
responses depend only on the responses of each subunit to the
two disparities (S1d1, S1d2, S2d1, S2d2 in Eqs. 1–3), and so the
simulation behaves in exactly the same way if these are elicited
by anticorrelated stimuli. However, disparity-defined edges in
anticorrelated stimuli are not visible to observers (Cumming et
al. 1998). Thus neurons that represent the perceptual experi-
ence of figure–ground segregation should cease to respond.
Interestingly the same model structure can be used to explain
the relatively weak responses elicited by anticorrelated stimuli
with uniform disparity (Haefner and Cumming 2008; Tanabe
and Cumming 2008). This would allow a single model to
explain both the responses to anticorrelated stimuli and the
responses to cyclopean edges, even if the responses to anticor-
related stimuli were weaker in V2 than in V1 (although current

data suggest that the responses are similar; Tanabe and Cum-
ming 2008).

The simple convergence of V1 outputs in our model is
reminiscent of Hubel and Wiesel’s model for producing V1
simple cells from lateral geniculate nucleus (LGN) inputs (for
review, see Ferster and Miller 2000). Although most imple-
mentations of this model assume that LGN inputs to V1 are
systematically organized to create simple cell receptive fields,
some recent studies have suggested that the observed responses
could be explained by haphazard wiring (Ringach 2004). The
properties of the subunits in our model suggest that haphazard
wiring could readily account for the generation of orientation-
selective responses to disparity-defined edges in V2. Thus it is
possible that at least some of the apparently complex stimulus
response properties found in V2 cells may be an accident of
unorganized convergence, rather than arising from a more
complex underlying organizational principle.
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