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Paré, Martin and Robert H. Wurtz . Monkey posterior parietal (Segraves and Goldberg 1987); at the level of the basal
cortex neurons antidromically activated from superior colliculus. ganglia, an indirect cortical input to the SC has also been
J. Neurophysiol. 78: 3493–3497, 1997. The connection between investigated, namely from the substantia nigra pars reticulata
the posterior parietal cortex (PPC) and the superior colliculus (SC) (Hikosaka and Wurtz 1983). To explore the parietal output
was investigated by antidromically activating neurons within the signal to the SC, we recorded the activity of antidromicallylateral intraparietal (LIP) area with single-pulse stimulation deliv-

activated LIP neurons in awake behaving monkeys. A briefered to the intermediate layers of the SC. To dissociate visual and
report of some of the results appeared in abstract form (Parésaccade-related responses, the discharge properties of the identified
and Wurtz 1997).efferent neurons were studied in the delayed visually guided sac-

cade task and the memory guided saccade task. We found that the
great majority (74%) of the identified LIP efferent neurons have M E T H O D S
a peripheral visual receptive field, typically with a broad spatial

Two male rhesus monkeys (Macaca mulatta , 6–11 kg) weretuning. About two-thirds (64%) exhibited sustained activity during
trained to perform visuooculomotor tasks for a liquid reward andthe delay period of the behavioral tasks, during which the monkeys
prepared for chronic recording of single neuron activity and eyehad to withhold eye movements, and 80% of these increased their
position in a single surgical procedure described previously (Mu-activity just before the onset of saccades. Both delay and presac-
noz and Wurtz 1993). All animal care and experimental procedurescadic discharges in the delayed visually guided saccade task were
were approved by the Institute Animal Care and Use Committeehigher than in the memory guided saccade task. These results estab-
and complied with Public Health Service Policy on the humanelish that the neuronal signal sent by LIP to the SC carries both
care and use of laboratory animals. Each monkey had two recordingvisual and saccade-related information.
cylinders. One was centered on the midline with its top tilted 427
posterior of vertical and allowed recording and stimulation in the
SC. The other was centered on the stereotaxic coordinates P 5.0I N T R O D U C T I O N
and L 12.0 mm and tilted 307 lateral of vertical and allowed re-
cording from LIP neurons (Fig. 1A) .Evidence accumulated in the last three decades from many

We first recorded in the SC to determine the layout of the motordifferent studies indicates that the intermediate layers of the map and the location of the intermediate layers containing saccade-
superior colliculus (SC) are critical to the generation of related neurons, where stimulation trains evoked saccades at low-
saccadic eye movements (for review see Guitton 1991; threshold intensities. Stimulating electrodes (1–4 monopolar tung-
Sparks and Hartwich-Young 1989; Wurtz 1996). Although sten microelectrodes with impedance of 70–120 kV at 1 kHZ)
these studies contributed to our understanding of the control were either moved with a microdrive during each session or held

fixed semichronically at low-threshold stimulation depths and pre-of saccades, they focused mainly on the SC itself or its
determined locations within the SC map. The electrical stimulusrelationship with downstream elements. Less is known about
used for antidromic activation was a single biphasic pulse (0.15the input signals to the SC from upstream structures.
ms duration) (Fig. 1A) .Among the cortical areas that play a major role in saccade

Before the recordings, a magnetic resonance imaging (MRI) ofproduction, anatomic studies have identified two areas that
the brain was obtained with at least one reference electrode fixedproject directly to the SC intermediate layers: the frontal eye to a grid (Crist et al. 1988) in the PPC cylinder and directed near

field (FEF) in the anterior bank of the arcuate sulcus in the intraparietal sulcus. This combined approach of a fixed grid
frontal cortex (Fries 1984; Huerta et al. 1986; Leichnetz et and MRI-verified reference electrode provided the resolution nec-
al. 1981; Stanton et al. 1988) and the lateral intraparietal essary to correctly direct microelectrodes within the lateral bank of
area (LIP) in the lateral bank of the intraparietal sulcus the intraparietal sulcus (Fig. 1B) . The LIP area itself was identified

physiologically by the concentration of neurons with significantin posterior parietal cortex (PPC) (Andersen et al. 1990;
visual and saccade-related activities. We studied the LIP neuronsAsanuma et al. 1985; Fries 1984; Lynch et al. 1985). Both
that were antidromically activated from the ipsilateral SC.areas contain neurons with saccade-related discharges (FEF:

The threshold intensity to evoke antidromic responses by SCBruce and Goldberg 1985; Schall 1991; LIP: Barash et al.
stimulation was defined as the intensity that evoked a response1991a,b; Colby et al. 1996; Gnadt and Andersen 1988), and
on Ç50% of the stimulus presentations. Stimulus intensity wassaccades are evoked by electrical microstimulation delivered monitored on an oscilloscope and was measured by taking the

within each area (FEF: Bruce et al. 1985; Robinson and voltage across a 10-kV resistor in series with the stimulating elec-
Fuchs 1969; LIP: Kurylo and Skavenski 1991; Shibutani et trode. The latency of the antidromic responses was defined as the
al. 1984; Thier and Andersen 1996). interval from the onset of the stimulus (at 1.2 times threshold

With respect to these direct cortical projections to the SC, intensity) to the onset of the evoked action potential. The anti-
dromic nature of the responses was ascertained by the constantonly those from the FEF have been physiologically studied
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FIG. 1. Neurons recorded in the intraparietal sulcus
were antidromically activated by stimulation of supe-
rior colliculus (SC). A : lateral view of a rhesus mon-
key brain illustrating stimulation and single-neuron re-
cording configuration. B : coronal section based on
magnetic resonance imaging (MRI) showing the 307
approach of recording electrode within the similarly
oriented lateral bank of intraparietal sulcus (monkey
MO) . C : example of one antidromic response of a
lateral intraparietal (LIP) neuron ( top) and its collision
(bottom) with a spontaneously generated action poten-
tial that triggered electrical stimulus (monkey MO) .
D and E : latencies of responses of LIP neurons to
stimulation of SC in the two animals; histograms show
only the shortest response latency observed for each
neuron. as, arcuate sulcus; cs, central sulcus; ips, intra-
parietal sulcus; lf, lateral fissure; ls, lunate sulcus; ps,
principal sulcus; sc, superior colliculus; sts, superior
temporal sulcus.

latency of the responses and often further verified with the collision 1.9 ms (Fig. 1E) . The mean threshold intensities were 196 {
test by triggering the stimulus after variable delays relative to the 206 mA (range 5–1,200) and 304 { 286 mA (range 2–
appearance of a spontaneous action potential. The evoked response 1,200) in monkey SM and MO , respectively. The great ma-
was then abolished (collision, shaded area in Fig. 1C) if the delay jority (150/163, 96%) of the neurons were activated with
between the spontaneous action potential and the stimulus was intensities õ600 mA.equal or less than the neuron’s response latency plus its refractory

Several different stimulating electrodes frequently wereperiod (typically õ0.5 ms), the collision interval (Fuller and
able to evoke antidromic responses in LIP neurons, but withSchlag 1976; Humphrey 1979; Lemon 1984). The occurrence of
different latencies and threshold intensities at each electrode.the collision was monitored routinely to confirm the isolation
The electrode with the lowest threshold intensity either wasthroughout the recording session.

Several visuooculomotor tasks were used to characterize the in a SC site that contained neurons that had visual receptive
discharges of the identified LIP efferent neurons. The data reported fields and movement fields similar to those of the LIP neu-
here were obtained in the delayed visually guided saccade task rons or located in the rostral SC where the corticotectal
(overlap saccade task in Munoz and Wurtz 1993) and the memory axons enter the SC. For 13 neurons, we studied carefully
guided saccade task. Both tasks were performed in dim ambient the change in threshold intensity for antidromic activation
light with visual stimuli (0.257 diam) generated by a television as a function of the depth of the stimulating electrode withinprojector and back-projected onto a translucent tangent screen. At

the SC. As exemplified in Fig. 2, high-threshold stimulusthe start of each trial, a visual fixation point appeared on the screen
intensities were required in the superficial layers of the SCand the monkey was required to maintain its visual axis within a
where neurons had only visual activity. The threshold inten-computer-defined window ({17) centered on the fixation point.
sities attained a minimum value at a depth where neuronsAfter 500–800 ms of fixation, an eccentric visual target appeared

and remained present either for 100 ms in the memory guided showed saccade-related activity and then increased for
saccade task or throughout the trial in the delayed visually guided deeper locations. The minima were 1.0–3.0 mm below the
saccade task. After a 500- to 1,000-ms delay period, the fixation dorsal surface of the SC.
point disappeared signaling the monkey to make a saccade within
500 ms to either the remembered location of the target or the still
visible target. LIP neuronal activity

Of the 163 antidromically activated neurons, 111 were
R E S U L T S adequately isolated for a period long enough to characterize

their activity in relation to visual stimulation and saccadicAntidromic responses
eye movements. The great majority (82/111, 74%) re-
sponded to visual stimulation with a latency °100 ms ofA total of 163 LIP neurons were found to be driven by

single-pulse stimuli delivered to the SC. All responses had the appearance of the spot of light in their receptive field.
Most neurons (67/82, 82%) had a large receptive field cen-a near-constant latency (variability õ 0.1 ms) at threshold

stimulus intensity and this latency was decreased negligibly tered in the contralateral visual field. The other neurons (15/
82, 18%) had a receptive field centered near the verticalfor higher stimulus intensities. Because of these two criteria,

we believe that all 163 neurons were antidromically acti- meridian.
When tested in the delayed visually guided and/or mem-vated. In addition, for 127 of these neurons, we used the

collision test and the occurrence of a collision was always ory guided saccade tasks, many visually responsive neurons
(71/111, 64%) maintained their activity during the delayobserved (Fig. 1C) .

The distribution of the antidromic response latencies was period and until the saccade was executed (Fig. 3) . They
ceased discharging either near the start of the saccade orunimodal and comparable in both monkeys (Figs. 1D , E) .

In monkey SM , the latencies varied between 0.8 and 5.6 ms, shortly after the end of the saccade. Several neurons also
exhibited a saccade-related increase in activity, but we didwith a mean of 2.3 { 1.3 (SD) ms (Fig. 1D) . In monkey

MO , it ranged from 0.9 to 11.0 ms, with a mean of 3.2 { not encounter neurons with only saccade-related activity.
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FIG. 3. Discharge properties of one antidromically activated LIP neuron
(monkey SM) . Rasters and spike densities along with horizontal and vertical
eye position traces are illustrated for delayed visually guided saccade task

FIG. 2. Relationship between the depth of the stimulating electrode ( top) and memory guided saccade task (bottom) . Activity is aligned on
within the SC and threshold intensity required to evoke an antidromic either target onset ( left) or saccade onset (right) . These data were collected
response from 2 LIP neurons (monkey SM) . Right : type of SC activity with the tasks interleaved randomly and the target positioned in the center
recorded with the same electrode at each depth; activity time-locked to of the neuron’s receptive field. To generate spike-density function, a
visual target (vis) , saccade-related activity (sac) , and a combination of Gaussian pulse of 10-ms width was substituted for each spike and then all
both (vis/sac) . Gaussians were summed together to produce a continuous function in time

(MacPherson and Aldridge 1979; Richmond et al. 1987). Calibrations are
100 spikes/s and 307; each time mark indicates 200 ms.Unlike the initial target-related responses, the level of both

the delay and presaccadic activities generally was lower in
the memory guided saccade task than in the delayed visually layed visually guided or memory guided saccade task, or
guided saccade task. To quantify the different types of activ- both.
ity, we measured the discharge rate during 1) a 100-ms In a minority of neurons, responses other than those pre-
epoch from 75 to 175 ms after target appearance (visual sented above were observed. Seven neurons (6%) were re-
period); 2) the last 300 ms before the fixation point was sponsive mainly or only when visual stimuli were presented
extinguished (delay period); and 3) the last 100 ms before near the face of the animal, six neurons (5%) had fixation-
saccade onset (presaccadic period). The analysis was per- related activity modulated by eye position (see Lynch et
formed on neurons (n Å 50) that showed significant delay
activity and for which the two tasks were randomly inter- TABLE 1. Activity of LIP efferent neurons in the delayed
leaved and the target positioned in the center of the neuron’s visually guided and memory guided saccade tasks
receptive field. Table 1 shows the results of this analysis for
the sample of neurons. Statistically significant differences Delayed Visually Guided Memory Guided
within and between the two tasks were found in the delay Activity Period Saccade Task Saccade Task
and presaccadic periods [Kruskal-Wallis analysis of vari-

Visual 61 { 4 59 { 4ance (ANOVA) on ranks, P õ 0.01; Student-Newman-
(16–126) (15–129)Keuls method, P õ 0.05]. Both the delay and presaccadic Delay 48 { 3 29 { 3*

activities in the delayed visually guided saccade task were (14–104) (3–100)
Presaccadic 59 { 4† 38 { 4*,†significantly higher than those in the memory guided saccade

(15–130) (3–152)task. Among individual neurons, the delay and presaccadic
activities were significantly higher in the delayed visually

Activity periods are defined in text and activity levels are presented as
guided saccade task than in the memory guided saccade task discharge rates in spikes/s. Values are mean { SE (n Å 50) with range in
for 44/50 (88%) and 41/50 (82%) neurons, respectively. parentheses. There was a statistically significant difference between the

median values among the groups [Kruskal-Wallis analysis of variance (AN-Only one neuron had significantly lower activity. In both
OVA) on ranks, P õ 0.01]. An all pairwise multiple comparison (Student-tasks, the presaccadic activity of the sample was significantly
Newman-Keuls method, P õ 0.05) revealed that the delayed and presac-higher than that of the delay period. Among individual neu- cadic discharges were significantly different between the 2 tasks (*) and

rons, the presaccadic activity of 40/50 neurons (80%) was the presaccadic activity in both tasks was significantly different than that
of the delay period (†).significantly higher than the delay activity in either the de-
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